Depth-First Search and Its
Use Case in Distributed
Systems Debugging

Nate Kremer-Herman

Submit tasks

Dispatch
tasks

Dispatch
tasks

Send
output

Run tasks

o 6lo ©

||€OEO

N A

Work Queue

_ o

Task may create files, interact with and set environment variables, etc.

Project goal

= Trace and traverse the causal history of
events in a distributed system.

= se depth first search as a querying tool for
finding causal history.

= Find the minimum set of events needed in the
log to build a proper historical trace (out of the
scope of this project).

Implementation techniques

= |mplemented Work Queue master in Perl.
> Could also use C or Python.
> Distributes each error tagged node.

= Workers use the iterative algorithm.
> (Can only use recursion to a certain depth.

Submit tasks

Dispatch
tasks

)

Wait

Read graph into

memory. Dispatch

For each tagged tasks

error node, submit
a DFS task to Perform DFS with

master. tagged node as
root.

Run tasks

45

S

l

my Swg = ﬁork_Queue—)new(pert => 0, name => "traverse", catalcg => 1):
$wq->specify catalog server("catalcg.cse.nd.edu", S087);

nmy $port = $wg->port():

print (STDERR "Wcrk Queue listening cn pcort $port a® e B0
system("ccndor submit workers -N tTraverse --ccres 1 —--memory 81%2 --disk 1024 $workers > dev

my $i = 0;
while ($i <= &runs) {
ny $jobs = O;
my $tool = "subtraverse"
ny S$traversed = J;
ny @outs;
ny S$epoch = time():;
foreach my $£e (Berrors) {
my $out = "traversal.$jobs.cut";
ny $command = "perl $tool -i $input -r fe > Sout”;
my $t = Work Queue::Task->new($command);
$t->specify input file(local names => $tool, remcote name => $tool);
$t->specify input file(local nams => $input, remote name => $input)’
$t->specify output_file (Sout);
Swg->submit (£t);
push (Gouts, $out):
$jcbs++;

.

print (STDERR "Z11 tasks submitted.\n"):

while (!$wg->empty()) {
ny $t = $wg->wait(10);
if($t) {
£jo0bs--;
}

Sequential notional summary (for worker nodes)

1 procedure DFS-iterative(G,v):

2 pushvonastack, S

4 while S is not empty

5 v =S.pop()

6 if v has not been visited in this round:
7 label v as visited

8 for all child edges of v do

9

1

if child has a matching attribute with v: //file or environment variable
0 S.push(child) pr—

Updated complexity analysis

= Time complexity is still O(]V| + |E|)
> Worst case, we look at all vertices.
> Best case, we look at no vertices (no errors!).

= Spaceis now O(W (|V| +|E]))
> Where W is the number of workers.
> Graph must be sent to each worker once,
then cached for future tasks.

Datasets

= All datasets are synthetic T
~ Eachis a binary graph Perl
> Ran out of time to produce greater variation.
> (Generated via Perl script

= Number of nodes ranges from 10 - 1,000,000
> Realistic dataset size 0(100) - 0(10,000)
> Tiny: 10 nodes

> Small: 100 nodes

6olossa|: 1,000,000 nodes

Traversal Time (s)

25

1.5

0.5

Serial Traversal Time for Varying Graph Size

Traversal Time
Std. Dev. F——

ol

00}
000}
0000}

Size of Graph (Nodes)

Traversal Time (s)

600

500

400

300

200

100

Parallel Traversal Time for Varying Graph Size

! ’ EEEE
Serial
Serial Std. Dev.
5 Workers
5 Workers Std. Dev.
10 Workers
10 Workers Std. Dev.
50 Workers
50 Workers Std. Dev.
100 Workers
100 Workers Std. Dev.

ol

00} ¢

000} ¢

Size of Graph (Nodes)

g0 LX1

Total Execution Time (s)

10000

1000

100

10

Peak Provisioning of a Parallel Application

Scale

E T T L T I I I I T T I I T I T I T I_E
Execution at Current Scale
I Execution at CapaC|ty —]
| | | 1 | | | | | | | L1 | | | | | L1

o o o

o o

o

= There exists some scale where parallel is
better than serial traversal.
> Did not find that within realistic data sizes.

= | now have the graph traversal backend for my
future research.
> Need to make a graphifier for debug logs.

= Do not make DFS parallel. pr——

> \Wonder if Gremlin can be used instead. 14
S

-

Makeflow

_

~

UNIVERSITY OF

5/ NOTRE DAME

™

Work Queue

T

