
Louvain Community Detection in
Connectomes

BY MARK HORENI

1

The Problem

2

The Problem

3

The Data
● C. elegans Connectome

○ 279 Nodes
○ 3225 Edges

● Mouse Retina
○ 1123 Nodes
○ 577,350 Edges

● Human Connectome
○ MRI Data
○ 277,345 Nodes
○ 64.4M Edges

4

● Metric to determine densess of communities compared to null model

● Global Property

● Goal: Maximize Modularity

● Suffers from “Resolution Limit”

Modularity

5

Louvain Visualized

6

Sequential
Pseudocode
“O(N LOGN)”

Could be O(N2)

7

Enhanced Kernel
● Every process gets its own set of vertices

● Consists of 2 Parts

○ Iterations of Louvain Locally

■ Maximizes Modularity in local communities

■ Aggregates to find a global moduality

■ Uses Ghost Vertices for interprocess communication

○ Building a new Graph

■ Communicate with other processes to construct new communities

8

Building the
graph

9

Enhanced Psudocode

10

● Public Library in C++

● ~500 Lines

● Uses MPI for interprocess Communication

● CSR to store Graphs

● Looked at time difference in “Resolution” Value

Enhanced Implementation (Grappolo)

11

Results
Wall Clock Time Number of Iterations

12

Compared to Sequential
Sequential Parallel

13

☹

What I’ve Learned
● Louvain is really fast, especially when parallelized

● Python not as fast

● Modularity may not mean anything in real life

● Will use it as a baseline since it’s so fast

14

Questions?

15

