Louvain Community Detection in
Connectomes

BY MARK HORENI

The Problem

o
8
a

Monadic

Triadic

The Problem

Sensory input

Interneurons

Motor neurons

Muscles

The Data

e C. elegans Connectome
o 279 Nodes
O 3225 Edges
® Mouse Retina
o 1123 Nodes
o 577,350 Edges
® Human Connectome
o MRI Data
o 277,345 Nodes
© 64.4M Edges

IVIoduIarlty

Metric to determine densess of communities compared to null model

e Global Property
e Goal: Maximize Modularity

e Suffers from “Resolution Limit”

Q:%Z Aij — 5 —10(ei,),

Louvain Visualized

1: V: aset of vertices
2: E: aset of edges
3: W: aset of weights of edges, initialized to 1
4: G <= (V,E,W)
5: repeat
;. C <« {{vi}|vi e G(V)}

6
7: calculate current modularity ¢y
8
9

Qnew ~ chr

. Qold ~ Qnew
10: repeat
1.1 for v; € V do
12: chr <~ Qnew
13: remove v; from its current community e
14: Ny, < {ck|lvi € G(V),v; € ck,e:; € G(E)} Se q u e n t I a I
15: find ¢ € N,, that has mazAQyy,},c, > 0

16: insert v; Into ¢,

}; zgl((i:lf?al;e new modularity @ ,ew P S e u d O C O d e

19: until no membership change or Qnew = Qcur

20: V' < {ci|lei € C} “O(N LOGN)”
21; E' <« {eij |Veij ifv; € Ci,’Uj € Cj,andCi # CJ}

22: W' < {w;; w;j, Ve;; if v; € C; and v; € C;

273: G <« (‘{//,Z;II,ZW/)j ’ ! 2 Could be O(Nz)
24: until Qprew = Qold

Enhanced Kernel

e Every process gets its own set of vertices

e Consists of 2 Parts

O lterations of Louvain Locally

m Maximizes Modularity in local communities
m Aggregates to find a global moduality

m Uses Ghost Vertices for interprocess communication
© Building a new Graph

m Communicate with other processes to construct new communities

Process #0

Process # 1

[Array]
<Map>

0
[Indexes] [0]2]4]5]

[0T4T5]
[Viocalc] [G]0]Z] [o12]
[Edges] [AT3T0T13Ta])| [(EI3TaT3T1Z]

Step 1: Count unique local clusters
(Community 1Ds originated from
vertices |Ds owned by the current
process) in [Vlecal CJ. Associate old
owned C ID with new renumbered
owned C ID <Cold, Cnew>

Unique Local Clusters = 2

<C, Cnew> %

Unique Local Clusters = 1

20

Step 2: Count any additional local
cluster (C IDs originated from local
vertices |Ds) In <Vremote,C> not
previously counted

Unigue Lacal Clusters = 2

<C, Chew> %

Unique Local Clusters = 1

e

Step 3: Process N communicates
number of Unique Local C to
Process N+1, and sums it to Cnew

Unique Local Clusters = 2

<C, Cnew> %

—l Unique Local Clusters = 1
+

Step 4: all to all, communicate
<C, Cnew> among all processes

< cove BN}

Step 5: Visit all vertices in the
partition and their neighbors
and generate local edge lists
for the new graph. Edges

Gt

between vertices with the same [<Cnew, <Cnew, weight>>

Cnew increment self loops,
edge between vertices in
different Cnew increments the
respective edge weight.

o]
(S

Step 6: all to all, communicate
partial edge lists according to
new vertex partitioning, and
adjust weights

olo|

2]% -—
1)

<Cnew, <Cnew, weight>>

v

—|o
s |12

Step 7: Build the new graph
(Cnew become new vertex ids)

e
(@5

[Indexes] &@E

[Edges] [OT2I2]
[Weights] [E]1T1]

Building the
graph

Enhanced Psudocode

Algorithm 2: Parallel Louvain Algorithm (at rank).
Input: Local portion GG; = (V;, E;) of the graph G =
(V. E)

Input: Threshold, 7 (default: 10~°)

1:
2
3:

4
5
6:
7
8

Ceurr + {{u}|Vu € V}
{currMod, prevMod} + 0
while true do
currMod + Louvainlteration(G;, Ceurr)
if currMod — prevMod < 7 then
break and output the final set of communities
BuildN ext PhaseGraph(Gi, Ceurr)
prevMod < currMod

Algorithm 3: Algorithm for the Louvain iterations of a
phase at rank 1.
Output: Modularity at the end of the phase.

1:

2:
32
4:

S

10:

11:

12:
13:
14:
15:
16:

17:

function LOUVAINITERATION(G . Crurr)
Vy < ExchangeGhostVertices(G})
while true do
send latest information on those local vertices that are
stored as ghost vertices on remote processes
receive latest information on all ghost vertices
for v € Vi do
Compute AQ that can be achieved by moving v to each
of its neighboring communities
Determine target community for v based on the migratior
that maximizes AQ
Update community information for both the source and
destination communities of v
send updated information on ghost communities to owner
processes
Cinfo + receive and update information on local
communities
currMod; < Compute modularity based on G; and Cin s,
currMod < all-reduce: ZW currMod;
if currMod — prevMod < T then
break
prevMod < currMod
return prevMod

Enhanced Implementation (Grappolo)

e Public Library in C++

e ~500 Lines
e Uses MPI for interprocess Communication

e CSRto store Graphs

e Looked at time difference in “Resolution” Value

Results

Wall Clock Time Number of Iterations
m .
| Resolution Besglution
, J {05 50‘:3’;5
10° 7 wem 075 sl
{ =m 10 10
J 40 .
wv
o 7 5
E ' ® 30
= i
107! 3 20 -
10 1
1072 3
0-
279 1123 277345 279 1123 277345
V| Vi

Compared to Sequential

Sequential Parallel
| Resolution 1 Resolution
| == 05 | = o5
102 mm 075 101? Em (.75

5-]_0 { =m 10

v 10" 4 @ v 07
S : £]
1071 1
107 1 ‘
1072 1
279 1123 277345 279 1123 277345
M VI

What I've Learned

® Louvain is really fast, especially when parallelized

e Python not as fast

e Modularity may not mean anything in real life

e Will use it as a baseline since it’s so fast

