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Bipartite Matching
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• Matching (M) is set of edges such that E(u,v)

• Vertices incident to only one edge in M

A Maximum 
Matching



Alternating/Augmenting Paths
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• Many flow networks rely on augmenting path algorithms

• Can be used to find a more optimal matching

• Runtime influenced by number of potential augmenting 
paths needing verification
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MBM: Multithreaded
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● Utilizes Hopcroft-Karp algorithm
○ OpenMP for alternating/augmenting path checks
○ Runs in

● Requires atomic operations for matching reversal
● Slower than sequential 
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Hopcroft-Karp
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1. BFS for alternate path 
frontier 

2. DFS for augmenting 
verification

3. Check if matching increases 
if augmenting path chosen

4. stop when there are no more 
augmenting paths possible.



BFS
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● Breadth First Search checks for 
vertices adjacent to a matched vertex
○ Adjacent vertices are candidates 

for alternating paths

● Parts of BFS can be parallelized using 
OpenMP
○ matched vertices can be checked 

simultaneously for adjacencies

● Initial experiments have used:
#pragma omp for



DFS
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● Depth First Search checks to see if the alternating paths are augmenting paths

● Like BFS  parts are easily parallelizable using OpenMP
○ check each path(edge) 



Benchmark Graphs
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Graph Name Rows Columns Edges

divorce 50 9 225

Cities 50 46 1342

World Cities 315 100 7518

Notredame_actors 392400 127823 1470404

12month1 12471 872622 22624727

● Suite sparse matrix/graph collection



Multithreaded Results
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Died!



Distributed MBM: Scaling
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● Use MPI for interprocess communication

● Hope to decrease run-time as process count scales

● Allow for streaming of edge/vertex changes

Challenges

● Optimal workload distribution necessary for reduced 

communication

● Dynamic Graph optimization



Partitioning
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● Vertices sorted by degree
● Vertices assigned based on optimal packing of edge count
● Vertices have associated edge list
● Outing edges “owned” by source vertex
● Two copies of each edge

○ Aids alternating path search
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BFS and DFS
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● Process performs BFS with regard to locally owned vertices

● If adjacent vertices are not “owned” notify owner of traversal

● Similar behavior for DFS phase

P1 P2

BFS
DFS



Distributed MBM
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Pros

● Partitioning possible and working as designed
○ Near uniform edge distribution

Cons

● Off node/process notifications dont work properly



Lessons Learned
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● Scaling Bipartite Matching is hard!

○ race condition potential

○ sequential nature in native form

● Multithreading works, but due to some required atomic 

had worse performance

● I believe the use of futures might alleviate much of the off 

node communication issues (not necessarily the overhead)



Can This Be Done?!
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● Yes. However it is non-trivial!

● Best methods to date still require heavy 

communication volumes
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