
Distributed Bipartite
Matching

Brian A. Page
bpage1nd.edu

December 10, 2018

Bipartite Matching

1

• Matching (M) is set of edges such that E(u,v)

• Vertices incident to only one edge in M

A Maximum
Matching

Alternating/Augmenting Paths

2

• Many flow networks rely on augmenting path algorithms

• Can be used to find a more optimal matching

• Runtime influenced by number of potential augmenting
paths needing verification

u v u v u v u v

Current
Matching

Find Alternate
Paths

Find Augmenting
Paths

Flip Matching
Selection

MBM: Multithreaded

3

● Utilizes Hopcroft-Karp algorithm
○ OpenMP for alternating/augmenting path checks
○ Runs in

● Requires atomic operations for matching reversal
● Slower than sequential

u v u v

Find Alternate
Paths

Find Augmenting
Paths

Hopcroft-Karp

4

1. BFS for alternate path
frontier

2. DFS for augmenting
verification

3. Check if matching increases
if augmenting path chosen

4. stop when there are no more
augmenting paths possible.

BFS

5

● Breadth First Search checks for
vertices adjacent to a matched vertex
○ Adjacent vertices are candidates

for alternating paths

● Parts of BFS can be parallelized using
OpenMP
○ matched vertices can be checked

simultaneously for adjacencies

● Initial experiments have used:
#pragma omp for

DFS

6

● Depth First Search checks to see if the alternating paths are augmenting paths

● Like BFS parts are easily parallelizable using OpenMP
○ check each path(edge)

Benchmark Graphs

7

Graph Name Rows Columns Edges

divorce 50 9 225

Cities 50 46 1342

World Cities 315 100 7518

Notredame_actors 392400 127823 1470404

12month1 12471 872622 22624727

● Suite sparse matrix/graph collection

Multithreaded Results

8

Died!

Distributed MBM: Scaling

9

● Use MPI for interprocess communication

● Hope to decrease run-time as process count scales

● Allow for streaming of edge/vertex changes

Challenges

● Optimal workload distribution necessary for reduced

communication

● Dynamic Graph optimization

Partitioning

10

● Vertices sorted by degree
● Vertices assigned based on optimal packing of edge count
● Vertices have associated edge list
● Outing edges “owned” by source vertex
● Two copies of each edge

○ Aids alternating path search

u v P1 P2

BFS and DFS

11

● Process performs BFS with regard to locally owned vertices

● If adjacent vertices are not “owned” notify owner of traversal

● Similar behavior for DFS phase

P1 P2

BFS
DFS

Distributed MBM

12

Pros

● Partitioning possible and working as designed
○ Near uniform edge distribution

Cons

● Off node/process notifications dont work properly

Lessons Learned

13

● Scaling Bipartite Matching is hard!

○ race condition potential

○ sequential nature in native form

● Multithreading works, but due to some required atomic

had worse performance

● I believe the use of futures might alleviate much of the off

node communication issues (not necessarily the overhead)

Can This Be Done?!

14

● Yes. However it is non-trivial!

● Best methods to date still require heavy

communication volumes

References
• Jeremy Kepner and John Gilbert. 2011. Graph Algorithms in the Language of

Linear Algebra. Soc. for Industrial and Applied Math., Philadelphia, PA, USA.

• https://en.wikipedia.org/wiki/Bipartite_graph

• https://en.wikipedia.org/wiki/Matching_(graph_theory)#Bipartite_matching

• https://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-pr

oblem/

• https://en.wikipedia.org/wiki/Hungarian_algorithm#The_algorithm_in_terms_o

f_bipartite_graphs

• Ariful Azad and Aydin Buluc. 2016. Distributed-Memory Algorithms for
Maximum Cardinality Matching in Bipartite Graphs. Lawrence Berkeley National
Labs.

15

