
Graph Guided Genetic 
Algorithms

Kyle Sweeney



Understanding Genetic Algorithms
Part 1: the Problem

1e100

X=(12.4,“No-go”,22,…)

f(x)



Understanding Genetic Algorithms
Part 2: Just Copy Nature

 Solution == DNA 

 e.g (12.4,“No-go”,22,…) 

 Fitness function

 A method for determining how “good” a solution is

 Can be a score

 Breeding Multiple Generations

 Combine DNA in different ways

 E.g (12.4, “No-go”,22,…) + (-3, “Go”, “9) == 2X possible combinations

 Survival of the Fittest



Application: Genetic Engineering

CGT: 0.123
CGC: 0.334
CGA: 0.462
CGG: 0.111

CGT: 0.121
CGC: 0.235
CGA: 0.461
CGG: 0.213



Solution: Genetic Algorithms to solve 
Genetic Engineering Problems

 “DNA”: the specific Codon encodings which generate the same Protein

 Fitness Function: ∑ | MinMax Source − MinMax Target |

 Breeding:

 Zip Children: for each position, alternate between taking from parents

 Random Children: randomly choose from parents

 Half and Half: first half one parent, second half the other

 ….



Scoring Function in Detail

“Area” Between Curves

+Additional Penalty 
if Orig and New 
have different slope 
directions



How Graphs Made things Different

 Graph Based Evolutionary Algorithms by Bryden K.M. et al

 Take a graph and place a potential solution on each vertex

 The only mating partners for that vertex are its neighbors

 Choose from potential mates who to mate with

 Only replace parent if child is better than parent



Old-Pseudocode

1   graph = new graph([ list of random permutations of start ])
2   for i in range 50:
3   for v in graph.nodes():
4   children = []
5   for n in graph.neighbors(v):
6   children += breed(n,v,10)
7   sort(children)
8   if children[0].score < v.score:
9   graph.replace(v,children[0])
10  return sort(graph.nodes())[0]

complexity: 𝑂𝑂 𝑉𝑉2𝐵𝐵 where 𝑂𝑂(𝐵𝐵) is time complexity of Breeding algorithm, in 
this case 𝑂𝑂 𝑁𝑁 where N is length of solutions.



New Pseudocode
1   graph = new graph([ list of random permutations of start ])
2   for i in range 50:
3       tupes = []
4   for v in graph.nodes():
5         nodetupes += (graph,v)
6   with pool(K) as p:
7   replaces = p.map(vertex_prog,nodetupes)
8   for x in replaces:
9               if x.child not in graph:
10                  graph.replace(x.parent,x.child)
11  return sort(graph.nodes())[0]

12 def vertex_prog(graph,vert):
13    children = []
14    for neighbor in graph.neighbors(vert):
15        children += breed(vert,neighbor)
16    children.sort()
17    if children[0].score < vert.score:
18        return (vert,children[0])



New Complexity

 Complexity is essentially the same as before, however with a 1
𝐾𝐾

factor, 
reducing the runtime by the number of processes being ran.

 For each node -> for each neighbor: 𝑂𝑂(𝑉𝑉2)

 For each node-node pair: 𝑂𝑂(𝐵𝐵)

 Total: 𝑂𝑂(𝑉𝑉
2𝐵𝐵
𝐾𝐾

)



Graphs – variable nodes
 Caveman Graph

 K connected Q cliques in a ring

 Windmill Graph

 Q cliques with all nodes connected to a central node

 Erdos-Renyi aka GNP

 For each possible edge between N nodes has a probability P of existing

 Watts-Strogatz

 N nodes, K edges, with probability P each edge is re-wired

 Start with ring of N nodes, connect to nearest K neighbors, rewire



Implementation Details

 Software Libraries

 Python3 targeted

 Graphs generated and manipulated via NetworkX

 Pypy3 used to execute the program

 Graph Manipulation Technique

 Multi-threaded, Each vertex being processed by a thread

 Data Collection

 4 Specimens being compared against an e.coli strain

 caenorhabditis elegans, Mus musculus, Homo sapien, Saccharomyces cerevisiae

 10 runs averaged in score and time elapsed

 Context: First gen solution could have score of 270,000+



Watts-Strogatz: 10 Edges, 10% -
E.coli vs Brewer’s Yeast

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16

Av
er

ag
e 

Ti
m

e 
(S

)

Processes in Pool

Watts-strogatz 40,10,0.1



Watts-Strogatz: 10 edges, 10%, 16 Procs-
E.coli vs Brewer’s Yeast

0

100

200

300

400

500

600

700

800

20 40 100

Av
g 

Ti
m

e 
(S

)

Number of Nodes

Watts-Strogatz 10,0.1

16000

16500

17000

17500

18000

18500

19000

19500

20000

20500

20 40 100

Av
g 

Sc
or

e

Number of Nodes

Watts-Strogatz 10,0.1



Windmill Graph: 4 Cliques, 16-Procs –
E.coli vs Brewer’s Yeast

0

200

400

600

800

1000

1200

1400

1600

5 10 25

Av
g.

 R
un

ti
m

e 
(S

)

Clique Size

Windmill Graph

16000

17000

18000

19000

20000

21000

22000

23000

5 10 25

Av
g.

 S
co

re
Clique Size

Windmill Graph



Erdos-Renyi: 10%, 16-Procs –
E.coli vs Brewer’s Yeast

0

100

200

300

400

500

600

700

800

20 40 100

Av
g.

 T
im

es
 (

S)

Total nodes

Erdos-Renyi - 0.1

16000

18000

20000

22000

24000

26000

28000

20 40 100

Av
g.

 S
co

re
s

Total Nodes

Erdos-Renyi - 0.1



It’s all about Connection – Windmill, 16-Proc

Windmill Graph - 4,25

Genes
Time Score

mean stdev mean stdev

5 1408.068770 8.699657 17428.424 1111.514012

4 1423.719129 10.158205 21811.427 1624.714577

3 1439.245480 26.072518 18648.071 841.697471

2 1404.060382 2.853025 20139.532 1090.583855

Windmill Graph - 25,4

Genes
Time Score

mean stdev mean stdev

5 469.180785 9.633604 20847.582 1406.669398

4 495.512529 3.884894 25048.655 1934.238458

3 466.830144 13.005787 23982.811 1560.534256

2 456.034971 2.652946 26518.976 2373.275543



It’s all about Connection – Caveman, 16-Proc

Caveman - 4,25

Genes

Time Score

mean stdev mean stdev

5 1397.356041 3.315249 17379.616 559.891502

4 1417.976462 3.782410 21811.167 1155.276183

3 1421.361858 3.749360 19056.142 905.003859

2 1406.844888 12.047170 21306.424 1237.06641

Caveman - 25,4

Genes

Time Score

mean stdev mean stdev

5 365.723654 6.032161 24305.905 1874.371394

4 363.854922 0.903344 29282.458 1242.619206

3 366.806325 2.963881 25348.137 1583.727080

2 375.012293 3.576178 27629.355 957.840066



It’s All about Connection – Watts-
strogatz, 16-Procs

watts-strogatz - 40,20,0.1 watts-strogatz - 40,10,0.1

Genes

Time Score

Genes

Time Score

mean stdev mean stdev mean stdev mean stdev

5 471.01908 1.914677 17617.438 1750.497095 5 287.126895 4.592964 19348.722 1898.003673

4 477.796109 5.220690 23033.722 1135.957858 4 288.292479 2.427174 23230.660 880.696387

3 473.214193 2.311429 19182.586 1310.839698 3 288.253836 2.194757 20261.781 1514.381834

2 470.439868 6.602775 21481.47 1274.895345 2 284.449048 1.707648 22243.756 1684.05801



Generalized Results

 Diminishing Returns Relationship between Time and Quality of Score

 Rather large Variability in solutions between different Graphs

 Graphs overall impact runtime by changing number of possible breeding pairs

 Watts-Strogatz Seems to be ideal in having lowest runtime and lower scores



Conclusions

 Simple Mapping of distributing work to different tasks may decrease gains as a 
result of increased overhead managing processes

 Not all graphs are ideally suited to any Genetic Algorithm problem


	Graph Guided Genetic Algorithms
	Understanding Genetic Algorithms�Part 1: the Problem
	Understanding Genetic Algorithms�Part 2: Just Copy Nature
	Application: Genetic Engineering
	Solution: Genetic Algorithms to solve Genetic Engineering Problems
	Scoring Function in Detail
	How Graphs Made things Different
	Old-Pseudocode
	New Pseudocode
	New Complexity
	Graphs – variable nodes
	Implementation Details
	Watts-Strogatz: 10 Edges, 10% - �E.coli vs Brewer’s Yeast
	Watts-Strogatz: 10 edges, 10%, 16 Procs-�E.coli vs Brewer’s Yeast
	Windmill Graph: 4 Cliques, 16-Procs – �E.coli vs Brewer’s Yeast
	Erdos-Renyi: 10%, 16-Procs – �E.coli vs Brewer’s Yeast
	It’s all about Connection – Windmill, 16-Proc
	It’s all about Connection – Caveman, 16-Proc
	It’s All about Connection – Watts-strogatz, 16-Procs
	Generalized Results
	Conclusions

