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Understanding Genetic Algorithms
Part 1: the Problem
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Understanding Genetic Algorithms
Part 2: Just Copy Nature

 Solution == DNA 

 e.g (12.4,“No-go”,22,…) 

 Fitness function

 A method for determining how “good” a solution is

 Can be a score

 Breeding Multiple Generations

 Combine DNA in different ways

 E.g (12.4, “No-go”,22,…) + (-3, “Go”, “9) == 2X possible combinations

 Survival of the Fittest



Application: Genetic Engineering

CGT: 0.123
CGC: 0.334
CGA: 0.462
CGG: 0.111

CGT: 0.121
CGC: 0.235
CGA: 0.461
CGG: 0.213



Solution: Genetic Algorithms to solve 
Genetic Engineering Problems

 “DNA”: the specific Codon encodings which generate the same Protein

 Fitness Function: ∑ | MinMax Source − MinMax Target |

 Breeding:

 Zip Children: for each position, alternate between taking from parents

 Random Children: randomly choose from parents

 Half and Half: first half one parent, second half the other

 ….



Scoring Function in Detail

“Area” Between Curves

+Additional Penalty 
if Orig and New 
have different slope 
directions



How Graphs Made things Different

 Graph Based Evolutionary Algorithms by Bryden K.M. et al

 Take a graph and place a potential solution on each vertex

 The only mating partners for that vertex are its neighbors

 Choose from potential mates who to mate with

 Only replace parent if child is better than parent



Old-Pseudocode

1   graph = new graph([ list of random permutations of start ])
2   for i in range 50:
3   for v in graph.nodes():
4   children = []
5   for n in graph.neighbors(v):
6   children += breed(n,v,10)
7   sort(children)
8   if children[0].score < v.score:
9   graph.replace(v,children[0])
10  return sort(graph.nodes())[0]

complexity: 𝑂𝑂 𝑉𝑉2𝐵𝐵 where 𝑂𝑂(𝐵𝐵) is time complexity of Breeding algorithm, in 
this case 𝑂𝑂 𝑁𝑁 where N is length of solutions.



New Pseudocode
1   graph = new graph([ list of random permutations of start ])
2   for i in range 50:
3       tupes = []
4   for v in graph.nodes():
5         nodetupes += (graph,v)
6   with pool(K) as p:
7   replaces = p.map(vertex_prog,nodetupes)
8   for x in replaces:
9               if x.child not in graph:
10                  graph.replace(x.parent,x.child)
11  return sort(graph.nodes())[0]

12 def vertex_prog(graph,vert):
13    children = []
14    for neighbor in graph.neighbors(vert):
15        children += breed(vert,neighbor)
16    children.sort()
17    if children[0].score < vert.score:
18        return (vert,children[0])



New Complexity

 Complexity is essentially the same as before, however with a 1
𝐾𝐾

factor, 
reducing the runtime by the number of processes being ran.

 For each node -> for each neighbor: 𝑂𝑂(𝑉𝑉2)

 For each node-node pair: 𝑂𝑂(𝐵𝐵)

 Total: 𝑂𝑂(𝑉𝑉
2𝐵𝐵
𝐾𝐾

)



Graphs – variable nodes
 Caveman Graph

 K connected Q cliques in a ring

 Windmill Graph

 Q cliques with all nodes connected to a central node

 Erdos-Renyi aka GNP

 For each possible edge between N nodes has a probability P of existing

 Watts-Strogatz

 N nodes, K edges, with probability P each edge is re-wired

 Start with ring of N nodes, connect to nearest K neighbors, rewire



Implementation Details

 Software Libraries

 Python3 targeted

 Graphs generated and manipulated via NetworkX

 Pypy3 used to execute the program

 Graph Manipulation Technique

 Multi-threaded, Each vertex being processed by a thread

 Data Collection

 4 Specimens being compared against an e.coli strain

 caenorhabditis elegans, Mus musculus, Homo sapien, Saccharomyces cerevisiae

 10 runs averaged in score and time elapsed

 Context: First gen solution could have score of 270,000+



Watts-Strogatz: 10 Edges, 10% -
E.coli vs Brewer’s Yeast
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Watts-Strogatz: 10 edges, 10%, 16 Procs-
E.coli vs Brewer’s Yeast
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Windmill Graph: 4 Cliques, 16-Procs –
E.coli vs Brewer’s Yeast
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Erdos-Renyi: 10%, 16-Procs –
E.coli vs Brewer’s Yeast
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It’s all about Connection – Windmill, 16-Proc

Windmill Graph - 4,25

Genes
Time Score

mean stdev mean stdev

5 1408.068770 8.699657 17428.424 1111.514012

4 1423.719129 10.158205 21811.427 1624.714577

3 1439.245480 26.072518 18648.071 841.697471

2 1404.060382 2.853025 20139.532 1090.583855

Windmill Graph - 25,4

Genes
Time Score

mean stdev mean stdev

5 469.180785 9.633604 20847.582 1406.669398

4 495.512529 3.884894 25048.655 1934.238458

3 466.830144 13.005787 23982.811 1560.534256

2 456.034971 2.652946 26518.976 2373.275543



It’s all about Connection – Caveman, 16-Proc

Caveman - 4,25

Genes

Time Score

mean stdev mean stdev

5 1397.356041 3.315249 17379.616 559.891502

4 1417.976462 3.782410 21811.167 1155.276183

3 1421.361858 3.749360 19056.142 905.003859

2 1406.844888 12.047170 21306.424 1237.06641

Caveman - 25,4

Genes

Time Score

mean stdev mean stdev

5 365.723654 6.032161 24305.905 1874.371394

4 363.854922 0.903344 29282.458 1242.619206

3 366.806325 2.963881 25348.137 1583.727080

2 375.012293 3.576178 27629.355 957.840066



It’s All about Connection – Watts-
strogatz, 16-Procs

watts-strogatz - 40,20,0.1 watts-strogatz - 40,10,0.1

Genes

Time Score

Genes

Time Score

mean stdev mean stdev mean stdev mean stdev

5 471.01908 1.914677 17617.438 1750.497095 5 287.126895 4.592964 19348.722 1898.003673

4 477.796109 5.220690 23033.722 1135.957858 4 288.292479 2.427174 23230.660 880.696387

3 473.214193 2.311429 19182.586 1310.839698 3 288.253836 2.194757 20261.781 1514.381834

2 470.439868 6.602775 21481.47 1274.895345 2 284.449048 1.707648 22243.756 1684.05801



Generalized Results

 Diminishing Returns Relationship between Time and Quality of Score

 Rather large Variability in solutions between different Graphs

 Graphs overall impact runtime by changing number of possible breeding pairs

 Watts-Strogatz Seems to be ideal in having lowest runtime and lower scores



Conclusions

 Simple Mapping of distributing work to different tasks may decrease gains as a 
result of increased overhead managing processes

 Not all graphs are ideally suited to any Genetic Algorithm problem
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