
Graph Guided Genetic
Algorithms

Kyle Sweeney

Understanding Genetic Algorithms
Part 1: the Problem

1e100

X=(12.4,“No-go”,22,…)

f(x)

Understanding Genetic Algorithms
Part 2: Just Copy Nature

 Solution == DNA

 e.g (12.4,“No-go”,22,…)

 Fitness function

 A method for determining how “good” a solution is

 Can be a score

 Breeding Multiple Generations

 Combine DNA in different ways

 E.g (12.4, “No-go”,22,…) + (-3, “Go”, “9) == 2X possible combinations

 Survival of the Fittest

Application: Genetic Engineering

CGT: 0.123
CGC: 0.334
CGA: 0.462
CGG: 0.111

CGT: 0.121
CGC: 0.235
CGA: 0.461
CGG: 0.213

Solution: Genetic Algorithms to solve
Genetic Engineering Problems

 “DNA”: the specific Codon encodings which generate the same Protein

 Fitness Function: ∑ | MinMax Source − MinMax Target |

 Breeding:

 Zip Children: for each position, alternate between taking from parents

 Random Children: randomly choose from parents

 Half and Half: first half one parent, second half the other

 ….

Scoring Function in Detail

“Area” Between Curves

+Additional Penalty
if Orig and New
have different slope
directions

How Graphs Made things Different

 Graph Based Evolutionary Algorithms by Bryden K.M. et al

 Take a graph and place a potential solution on each vertex

 The only mating partners for that vertex are its neighbors

 Choose from potential mates who to mate with

 Only replace parent if child is better than parent

Old-Pseudocode

1 graph = new graph([list of random permutations of start])
2 for i in range 50:
3 for v in graph.nodes():
4 children = []
5 for n in graph.neighbors(v):
6 children += breed(n,v,10)
7 sort(children)
8 if children[0].score < v.score:
9 graph.replace(v,children[0])
10 return sort(graph.nodes())[0]

complexity: 𝑂𝑂 𝑉𝑉2𝐵𝐵 where 𝑂𝑂(𝐵𝐵) is time complexity of Breeding algorithm, in
this case 𝑂𝑂 𝑁𝑁 where N is length of solutions.

New Pseudocode
1 graph = new graph([list of random permutations of start])
2 for i in range 50:
3 tupes = []
4 for v in graph.nodes():
5 nodetupes += (graph,v)
6 with pool(K) as p:
7 replaces = p.map(vertex_prog,nodetupes)
8 for x in replaces:
9 if x.child not in graph:
10 graph.replace(x.parent,x.child)
11 return sort(graph.nodes())[0]

12 def vertex_prog(graph,vert):
13 children = []
14 for neighbor in graph.neighbors(vert):
15 children += breed(vert,neighbor)
16 children.sort()
17 if children[0].score < vert.score:
18 return (vert,children[0])

New Complexity

 Complexity is essentially the same as before, however with a 1
𝐾𝐾

factor,
reducing the runtime by the number of processes being ran.

 For each node -> for each neighbor: 𝑂𝑂(𝑉𝑉2)

 For each node-node pair: 𝑂𝑂(𝐵𝐵)

 Total: 𝑂𝑂(𝑉𝑉
2𝐵𝐵
𝐾𝐾

)

Graphs – variable nodes
 Caveman Graph

 K connected Q cliques in a ring

 Windmill Graph

 Q cliques with all nodes connected to a central node

 Erdos-Renyi aka GNP

 For each possible edge between N nodes has a probability P of existing

 Watts-Strogatz

 N nodes, K edges, with probability P each edge is re-wired

 Start with ring of N nodes, connect to nearest K neighbors, rewire

Implementation Details

 Software Libraries

 Python3 targeted

 Graphs generated and manipulated via NetworkX

 Pypy3 used to execute the program

 Graph Manipulation Technique

 Multi-threaded, Each vertex being processed by a thread

 Data Collection

 4 Specimens being compared against an e.coli strain

 caenorhabditis elegans, Mus musculus, Homo sapien, Saccharomyces cerevisiae

 10 runs averaged in score and time elapsed

 Context: First gen solution could have score of 270,000+

Watts-Strogatz: 10 Edges, 10% -
E.coli vs Brewer’s Yeast

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16

Av
er

ag
e

Ti
m

e
(S

)

Processes in Pool

Watts-strogatz 40,10,0.1

Watts-Strogatz: 10 edges, 10%, 16 Procs-
E.coli vs Brewer’s Yeast

0

100

200

300

400

500

600

700

800

20 40 100

Av
g

Ti
m

e
(S

)

Number of Nodes

Watts-Strogatz 10,0.1

16000

16500

17000

17500

18000

18500

19000

19500

20000

20500

20 40 100

Av
g

Sc
or

e

Number of Nodes

Watts-Strogatz 10,0.1

Windmill Graph: 4 Cliques, 16-Procs –
E.coli vs Brewer’s Yeast

0

200

400

600

800

1000

1200

1400

1600

5 10 25

Av
g.

 R
un

ti
m

e
(S

)

Clique Size

Windmill Graph

16000

17000

18000

19000

20000

21000

22000

23000

5 10 25

Av
g.

 S
co

re
Clique Size

Windmill Graph

Erdos-Renyi: 10%, 16-Procs –
E.coli vs Brewer’s Yeast

0

100

200

300

400

500

600

700

800

20 40 100

Av
g.

 T
im

es
 (

S)

Total nodes

Erdos-Renyi - 0.1

16000

18000

20000

22000

24000

26000

28000

20 40 100

Av
g.

 S
co

re
s

Total Nodes

Erdos-Renyi - 0.1

It’s all about Connection – Windmill, 16-Proc

Windmill Graph - 4,25

Genes
Time Score

mean stdev mean stdev

5 1408.068770 8.699657 17428.424 1111.514012

4 1423.719129 10.158205 21811.427 1624.714577

3 1439.245480 26.072518 18648.071 841.697471

2 1404.060382 2.853025 20139.532 1090.583855

Windmill Graph - 25,4

Genes
Time Score

mean stdev mean stdev

5 469.180785 9.633604 20847.582 1406.669398

4 495.512529 3.884894 25048.655 1934.238458

3 466.830144 13.005787 23982.811 1560.534256

2 456.034971 2.652946 26518.976 2373.275543

It’s all about Connection – Caveman, 16-Proc

Caveman - 4,25

Genes

Time Score

mean stdev mean stdev

5 1397.356041 3.315249 17379.616 559.891502

4 1417.976462 3.782410 21811.167 1155.276183

3 1421.361858 3.749360 19056.142 905.003859

2 1406.844888 12.047170 21306.424 1237.06641

Caveman - 25,4

Genes

Time Score

mean stdev mean stdev

5 365.723654 6.032161 24305.905 1874.371394

4 363.854922 0.903344 29282.458 1242.619206

3 366.806325 2.963881 25348.137 1583.727080

2 375.012293 3.576178 27629.355 957.840066

It’s All about Connection – Watts-
strogatz, 16-Procs

watts-strogatz - 40,20,0.1 watts-strogatz - 40,10,0.1

Genes

Time Score

Genes

Time Score

mean stdev mean stdev mean stdev mean stdev

5 471.01908 1.914677 17617.438 1750.497095 5 287.126895 4.592964 19348.722 1898.003673

4 477.796109 5.220690 23033.722 1135.957858 4 288.292479 2.427174 23230.660 880.696387

3 473.214193 2.311429 19182.586 1310.839698 3 288.253836 2.194757 20261.781 1514.381834

2 470.439868 6.602775 21481.47 1274.895345 2 284.449048 1.707648 22243.756 1684.05801

Generalized Results

 Diminishing Returns Relationship between Time and Quality of Score

 Rather large Variability in solutions between different Graphs

 Graphs overall impact runtime by changing number of possible breeding pairs

 Watts-Strogatz Seems to be ideal in having lowest runtime and lower scores

Conclusions

 Simple Mapping of distributing work to different tasks may decrease gains as a
result of increased overhead managing processes

 Not all graphs are ideally suited to any Genetic Algorithm problem

	Graph Guided Genetic Algorithms
	Understanding Genetic Algorithms�Part 1: the Problem
	Understanding Genetic Algorithms�Part 2: Just Copy Nature
	Application: Genetic Engineering
	Solution: Genetic Algorithms to solve Genetic Engineering Problems
	Scoring Function in Detail
	How Graphs Made things Different
	Old-Pseudocode
	New Pseudocode
	New Complexity
	Graphs – variable nodes
	Implementation Details
	Watts-Strogatz: 10 Edges, 10% - �E.coli vs Brewer’s Yeast
	Watts-Strogatz: 10 edges, 10%, 16 Procs-�E.coli vs Brewer’s Yeast
	Windmill Graph: 4 Cliques, 16-Procs – �E.coli vs Brewer’s Yeast
	Erdos-Renyi: 10%, 16-Procs – �E.coli vs Brewer’s Yeast
	It’s all about Connection – Windmill, 16-Proc
	It’s all about Connection – Caveman, 16-Proc
	It’s All about Connection – Watts-strogatz, 16-Procs
	Generalized Results
	Conclusions

