Fraud Detection by
Dense Subgraph Detection

L @ ! ;
i e iy : e 8
m,,.._k‘w_

Tong Zhao )




Dense Subgraph Detection

* Givenagraph G = (V,E) with verticesV andedges E C V X V.

* Find a subgraph S such that d(S) is maximized.

[E(S)|
S|

* Edge density (average degree): d(S) =



Charikar’s greedy algorithm (2000) [1]

4 Figure from [3].




2-approximation Guarantee

* Density of the result is theoretically guaranteed.
e Charikar’s algorithm is a provable 2-approximation algorithm.

d(S") =~ d(Sope)

« S’ denotes the result subgraph by Charikar’s algorithm.
* Sopt denotes the optimal solution.

e Usually gives close-to-optimal result in real life graphs.



Possible enhancements

* Dense subgraph detection for larger graphs.
* Dense subgraph detection for dynamic graphs.



Scalability

* Observation:
* In social media graphs: |E| >> | V]
e Can we only store the vertices?



Charikar’s greedy algorithm (2000) [1]

1: procedure DENSEST-SUBGRAPH(G)

2 Input: Undirected graph G = (V, E).

3 Output: Dense sugraph S of G.

4: n <« |V|

D: G, «— G

6 for £k «+ n down to 1 do

7 v < the vertex with smallest degree in G
8
9

Delete all edges incident on v.

: Delete all vertices with 0 degree.
10: (Gj._1 < the remaining of graph G

11: return The subgraph with maximum density amoung G1,Ga, ..., G,.



Scalability

* Most intuitive approach:
 Store only the vertices with their degrees in RAM.
* O(|V|) passes.



Enhanced Algorithm [2]

* Remove a set of vertices each time.

Algorithm 1 Densest subgraph for undirected graphs.

Require: G = (V,E) and € > 0
1: S’,S +V
2: while S # () do
3:  A(S) <+ {i€ S |degs(?) <2(1+¢)p(S)}

4. S+ S\ A(S)

5. if p(S) > p(S) then
6: S« S

7.  end if

8: end while

9: return S




Enhanced Algorithm

* For any € > 0, this algorithm has
* O(logq+¢ |V|) passes.
* (2 + 2€)-approximation guarantee.

* This algorithm can be parallelized or distributed.
* Originally implemented in MapReduce.



Implementation

* Written in Python 3.
* ~100 lines.
* No paradigm was used.

* multiprocessing for parallelization.



Implementation

( ) :
best_subgraph []
best_density
( .subgraph) :
.tmp_counter .subgraph.items())
q = Queue()
ranges .getST( .tmp_counter))
processes []
i (10):
p = Process( .getBadVertices, (q, ranges[i]))
p.start()
processes.append(p)
P processes:
p.join()
q.empty():
.subgraph[q.get()]
.updateDegrees|()
current_density .getDensity( . subgraph)
current_density best_density:
best_density current_density
best_subgraph ( .subgraph.elements())

( (best_subgraph), best_density))
best_subgraph, best_density




Dataset

* Twitter dataset.
e 41.7 million users (vertices).
* 1.47 billion follows (edges).
e 25Gb.

* Very slow due to the I/O part.
* O(logq4¢ |V|) passes. (43 with e = 0.5)



Dataset

* Twitter dataset.
e 41.7 million users (vertices).
* 1.47 billion follows (edges).
e 25Gb.

* Very slow due to the I/O part.
* O(logq4¢ |V|) passes. (43 with e = 0.5)

e |t works.
e Large improvement from MemeroyError.



References

* [1] Charikar, Moses. "Greedy approximation algorithms for finding dense components in a
graph." International Workshop on Approximation Algorithms for Combinatorial Optimization. Springer,

Berlin, Heidelberg, 2000.

e [2] Bahmani, Bahman, Ravi Kumar, and Sergei Vassilvitskii. "Densest subgraph in streaming and
mapreduce." Proceedings of the VLDB Endowment 5.5 (2012): 454-465.

* [3] Gionis, Aristides, and Charalampos E. Tsourakakis. "Dense subgraph discovery: Kdd 2015
tutorial." Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. ACM, 2015.



