Fraud Detection by Dense Subgraph Detection

Tong Zhao

Dense Subgraph Detection

- Given a graph G = (V, E) with vertices V and edges $E \subseteq V \times V$.
- Find a subgraph S such that d(S) is maximized.
- Edge density (average degree): $d(S) = \frac{|E(S)|}{|S|}$

Charikar's greedy algorithm (2000) [1]

2-approximation Guarantee

- Density of the result is theoretically guaranteed.
 - Charikar's algorithm is a provable 2-approximation algorithm.

$$d(S') \ge \frac{1}{2} d(S_{opt})$$

- S' denotes the result subgraph by Charikar's algorithm.
- *S*_{opt} denotes the optimal solution.
- Usually gives close-to-optimal result in real life graphs.

Possible enhancements

- Dense subgraph detection for larger graphs.
- Dense subgraph detection for dynamic graphs.

Scalability

- Observation:
- In social media graphs: |E| >> |V|
- Can we only store the vertices?

Charikar's greedy algorithm (2000) [1]

- 1: procedure DENSEST-SUBGRAPH(G)
- 2: **Input:** Undirected graph G = (V, E).
- 3: **Output:** Dense sugraph S of G.
- $4: \qquad n \leftarrow |V|$
- 5: $G_n \leftarrow G$
- 6: for $k \leftarrow n$ down to 1 do
- 7: $v \leftarrow \text{the vertex with smallest degree in } G_k$
- 8: Delete all edges incident on v.
- 9: Delete all vertices with 0 degree.
- 10: $G_{k-1} \leftarrow \text{the remaining of graph } G_k$
- 11: **return** The subgraph with maximum density amoung G_1, G_2, \ldots, G_n .

Scalability

- Most intuitive approach:
- Store only the vertices with their degrees in RAM.
- O(|V|) passes.

Enhanced Algorithm [2]

• Remove a set of vertices each time.

Algorithm 1 Densest subgraph for undirected graphs. **Require:** G = (V, E) and $\epsilon > 0$ 1: $\tilde{S}, S \leftarrow V$ 2: while $S \neq \emptyset$ do 3: $A(S) \leftarrow \{i \in S \mid \deg_S(i) \le 2(1+\epsilon)\rho(S)\}$ 4: $S \leftarrow S \setminus A(S)$ 5: if $\rho(S) > \rho(\tilde{S})$ then 6: $\tilde{S} \leftarrow S$ 7: end if 8: end while 9: return \tilde{S}

Enhanced Algorithm

- For any $\epsilon > 0$, this algorithm has
 - $O(\log_{1+\epsilon} |V|)$ passes.
 - $(2 + 2\epsilon)$ -approximation guarantee.
- This algorithm can be parallelized or distributed.
 - Originally implemented in MapReduce.

Implementation

- Written in Python 3.
- ~100 lines.
- No paradigm was used.
- multiprocessing for parallelization.

Implementation

62	<pre>def converge(self):</pre>
63	<pre>best_subgraph = []</pre>
64	<pre>best_density = 0.0</pre>
65	<pre>while len(self.subgraph) > 0:</pre>
66	<pre>self.tmp_counter = list(self.subgraph.items())</pre>
67	q = Queue()
68	ranges = self.getST(len(self.tmp_counter))
69	processes = []
70	for i in range(10):
71	<pre>p = Process(target=self.getBadVertices, args=(q, ranges[i]))</pre>
72	p.start()
73	processes.append(p)
74	for p in processes:
75	p.join()
76	<pre>while not q.empty():</pre>
77	<pre>del self.subgraph[q.get()]</pre>
78	<pre>self.updateDegrees()</pre>
79	current_density = self.getDensity(self.subgraph)
80	<pre>if current_density > best_density:</pre>
81	<pre>best_density = current_density</pre>
82	<pre>best_subgraph = list(self.subgraph.elements())</pre>
83	print('The final result subgraph contains {} vertices with density of {}.'. \setminus
84	<pre>format(len(best_subgraph), best_density))</pre>
85	return best_subgraph, best_density

Dataset

- Twitter dataset.
 - 41.7 million users (vertices).
 - 1.47 billion follows (edges).
 - 25Gb.
- Very slow due to the I/O part.
 - $O(\log_{1+\epsilon} |V|)$ passes. (43 with $\epsilon = 0.5$)

Dataset

- Twitter dataset.
 - 41.7 million users (vertices).
 - 1.47 billion follows (edges).
 - 25Gb.
- Very slow due to the I/O part.
 - $O(\log_{1+\epsilon} |V|)$ passes. (43 with $\epsilon = 0.5$)
- It works.
 - Large improvement from MemeroyError.

References

- [1] Charikar, Moses. "Greedy approximation algorithms for finding dense components in a graph." *International Workshop on Approximation Algorithms for Combinatorial Optimization*. Springer, Berlin, Heidelberg, 2000.
- [2] Bahmani, Bahman, Ravi Kumar, and Sergei Vassilvitskii. "Densest subgraph in streaming and mapreduce." *Proceedings of the VLDB Endowment* 5.5 (2012): 454-465.
- [3] Gionis, Aristides, and Charalampos E. Tsourakakis. "Dense subgraph discovery: Kdd 2015 tutorial." *Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. ACM, 2015.