Fraud Detection by Dense Subgraph Detection

Tong Zhao
Dense Subgraph Detection

• Given a graph $G = (V, E)$ with vertices V and edges $E \subseteq V \times V$.
• Find a subgraph S such that $d(S)$ is maximized.
• Edge density (average degree): $d(S) = \frac{|E(S)|}{|S|}$
Charikar’s greedy algorithm (2000) [1]

Figure from [3].
2-approximation Guarantee

• Density of the result is theoretically guaranteed.
 • Charikar’s algorithm is a provable 2-approximation algorithm.
 \[d(S') \geq \frac{1}{2} d(S_{opt}) \]
 • \(S' \) denotes the result subgraph by Charikar’s algorithm.
 • \(S_{opt} \) denotes the optimal solution.

• Usually gives close-to-optimal result in real life graphs.
Possible enhancements

• Dense subgraph detection for larger graphs.
• Dense subgraph detection for dynamic graphs.
Scalability

• Observation:
• In social media graphs: $|E| >> |V|$
• Can we only store the vertices?
Charikar’s greedy algorithm (2000) [1]

1: **procedure** DENSEST-SUBGRAPH(G)
2: **Input:** Undirected graph $G = (V, E)$.
3: **Output:** Dense subgraph S of G.
4: $n \leftarrow |V|$
5: $G_n \leftarrow G$
6: **for** $k \leftarrow n$ **down to** 1 **do**
7: $v \leftarrow$ the vertex with smallest degree in G_k
8: **Delete all edges incident on** v.
9: Delete all vertices with 0 degree.
10: $G_{k-1} \leftarrow$ the remaining of graph G_k
11: **return** The subgraph with maximum density among G_1, G_2, \ldots, G_n.
Scalability

• Most intuitive approach:
• Store only the vertices with their degrees in RAM.
• $O(|V|)$ passes.
Enhanced Algorithm [2]

• Remove a set of vertices each time.

Algorithm 1 Densest subgraph for undirected graphs.

Require: $G = (V, E)$ and $\epsilon > 0$

1: $\tilde{S}, S \leftarrow V$
2: while $S \neq \emptyset$ do
3: \begin{align*}
 A(S) &\leftarrow \{i \in S \mid \deg_S(i) \leq 2(1 + \epsilon)\rho(S)\} \\
 S &\leftarrow S \setminus A(S)
\end{align*}
4: if $\rho(S) > \rho(\tilde{S})$ then
5: \begin{align*}
 \tilde{S} &\leftarrow S
\end{align*}
6: end if
7: end while
8: return \tilde{S}
Enhanced Algorithm

• For any $\epsilon > 0$, this algorithm has
 • $O(\log_{1+\epsilon} |V|)$ passes.
 • $(2 + 2\epsilon)$-approximation guarantee.

• This algorithm can be parallelized or distributed.
 • Originally implemented in MapReduce.
Implementation

• Written in Python 3.
• ~100 lines.
• No paradigm was used.
• multiprocessing for parallelization.
Implementation

def converge(self):
 best_subgraph = []
 best_density = 0.0
 while len(self.subgraph) > 0:
 self.tmp_counter = list(self.subgraph.items())
 q = Queue()
 ranges = self.getST(len(self.tmp_counter))
 processes = []
 for i in range(10):
 p = Process(target=self.getBadVertices, args=(q, ranges[i]))
 p.start()
 processes.append(p)
 for p in processes:
 p.join()
 while not q.empty():
 del self.subgraph[q.get()]
 self.updateDegrees()
 current_density = self.getDensity(self.subgraph)
 if current_density > best_density:
 best_density = current_density
 best_subgraph = list(self.subgraph.elements())
 print('The final result subgraph contains {} vertices with density of {}.
 format(len(best_subgraph), best_density))
 return best_subgraph, best_density
Dataset

- Twitter dataset.
 - 41.7 million users (vertices).
 - 1.47 billion follows (edges).
 - 25Gb.
- Very slow due to the I/O part.
 - $O(\log_{1+\epsilon} |V|)$ passes. (43 with $\epsilon = 0.5$)
Dataset

- Twitter dataset.
 - 41.7 million users (vertices).
 - 1.47 billion follows (edges).
 - 25Gb.

- Very slow due to the I/O part.
 - $O(\log_{1+\epsilon}|V|)$ passes. (43 with $\epsilon = 0.5$)

- It works.
 - Large improvement from MemeroyError.
References