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Application
Neural network analysis

● Networks are organized into 

logical components

○ Recurrent gates, 

differentiable data 

structures, etc.

● Let’s try to identify 

components that most facilitate 

learning

Kernel
“Gradient tracing”

● Finds the path in the 

computation graph through 

which the most gradient 

propagates

● Then finds components that the 

path intersects with

● Algorithmically very similar to 

“backpropagation”
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Computation Graphs
● Any neural network can be 

expressed as a graph of 

mathematical operators

● Like an abstract syntax tree

● Vertices represent operators, 

constants, or parameters

● Edges are directed and represent 

assignments to function parameters

● Always a DAG

● “Components” are subgraphs of the 

computation graph
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Backpropagation
● Computes the gradient of a loss function with respect to the network’s parameters

● A necessary operation during training

● Can be expressed as a graph
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Backpropagation as a Graph

Parameter

Mathematical 

operators

Edge weights are partial derivatives 

with respect to inputs

In accordance with chain rule, 

multiply received gradient 

with local gradient wrt input

Accumulate gradients from 

multiple nodes by adding 

them together (requires 

topological sort)

5

● Edge weights are partial 

derivatives

○ n.b. a “gradient” is a vector 

of partial derivatives

● Three simple rules

○ Multiply along paths

○ Sum incoming edges

○ Stop at parameters

● Can be seen as 

computing sum of all 

path weights leading into 

each vertex

○ Where path weight is the 

product of all edge weights 

along the path



Gradient Tracing as a Graph

Parameter

Mathematical 

operators

1) Edge weights are gradients 

with respect to inputs

2) In accordance with chain 

rule, multiply received 

gradient with local gradient 

wrt input

3) Accumulate gradients from 

multiple nodes by adding 

them together (requires 

topological sort)

Some paths are better than others!

Same procedure as backprop,

different semiring (max/argmax of 

absolute value instead of sum)
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Gradient Tracing
● How do we find the path with the highest weight?

● Answer: run backprop with a different semiring

● Instead of sum, take max of absolute value

○ Take argmax to preserve backpointers

● Analogous to the difference between the Forward Algorithm and the Viterbi 

Algorithm
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Backprop vs. Gradient Tracing

Backpropagation (computing total incoming gradient)

Gradient tracing (identifying path with biggest gradient)

u

v
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Complexity of Backprop and Gradient Tracing
● Every edge and vertex in the computation graph G = (V, E) is visited a fixed 

number of times

○ Edge weights are summed or max-ed together

● Time complexity for both algorithms is linear: O(|V| + |E|)
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Enhancement
● What I’ve described so far assumes that all inputs and outputs among operators 

are scalars

● But actual neural network implementations use tensor-level operations for 

performance

○ Tensor = multi-dimensional array

● Can use GPUs to accelerate tensor-level operations significantly

○ Both CPUs and GPUs take better advantage of parallelism and locality when values are grouped 

into contiguous “tensors”

● Note that the size of the graph is not the number of vertices and edges in the 

tensor graph, but in the equivalent scalar graph

10



Example Tensor-level Computation Graph
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Implementation Details
● Language: Python

● Library: PyTorch

● Experiments show results on a Python implementation of the closely-related 

backpropagation algorithm, since it does not require digging into PyTorch 

primitives

● Problem: Computing the gradient (or gradient trace) for some operations 

(especially matrix multiplication) requires knowing the values of the inputs

○ PyTorch does not provide access to these through the Python API

● Given a PyTorch representing a loss function, traverses the computation graph, 

then topologically sorts using Kahn’s Algorithm

○ Must use iterative rather than recursive code to avoid hitting recursion limit
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Scaling Results
● Comparison of Python implementation of backprop (including and not including 

topological sort) and PyTorch’s C++ implementation

○ CPU vs. GPU

○ vs. Number of Layers

○ vs. Batch Size

○ vs. Size of Weight Matrix

○ vs. Graph Size

● Gradient and gradient trace of matrix-vector multiplication

● CPU Model: Intel Core i7-4790, 3.60GHz, 8 cores

● GPU Model: NVIDIA Tesla K40c, 2880 CUDA cores
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Time vs. Number of Layers
● Synthetically generated feed-forward neural network with N layers

● All layers have 20 hidden units, input and output are both 10 units

● Graph size is proportional to number of layers

● Scales linearly in number of layers

● Poor parallelization potential
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Time vs. Number of Layers
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● GPU is twice as slow! -- serial layers are not parallelizable



Time vs. Batch Size
● Synthetically generated feed-forward network with varying batch size

● Higher batch size introduces greater opportunity for parallelism

● 20 layers, 20 hidden units each, input and output are 10 units

● Scales linearly in batch size

16



Time vs. Batch Size
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Time vs. Batch Size
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Time vs. Weight Matrix Size
● Network with 20 layers, 10 input and output units

● All layers have N hidden units

● Size of weight matrix is quadratic in N

● Time to do matrix-vector multiplication is quadratic in N

● Scales quadratically with N
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Time vs. Weight Matrix Size
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Time vs. Size of Random Graph
● Randomly generated feed-forward networks with diamond configurations

● Size of equivalent scalar graph is estimated from sizes and types of tensor 

operations
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Random Graph Generation
● Recursively expand vertices using a 

“vertex replacement grammar”

● Consists entirely of weight matrices 

and tanh activation functions

● Sizes of tensor operations are sampled 

randomly from [10, 500]
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Random Graph Generation
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1 - p

p / 2

p / 2

● Initially p = 0.99

● p is divided by number of 

square vertices on right side 

(2) to avoid explosion of 

graph size



Time vs. Size of Random Graph

24



Time vs. Size of Random Graph
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Matrix-vector multiplication gradient/trace
N is size of square matrix
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Matrix-vector multiplication gradient/trace
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What I Learned
● Inspecting the computation graph in PyTorch is… hard

● GPUs can still do pretty well on small graphs

● Gradient tracing is expensive compared to backpropagation

● In Python, write your graph traversals iteratively, without recursion
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