Analyzing Neural Networks with Gradient Tracing

Brian DuSell
Application

Neural network analysis

- Networks are organized into logical components
 - Recurrent gates, differentiable data structures, etc.
- Let’s try to identify components that most facilitate learning

Kernel

“Gradient tracing”

- Finds the path in the computation graph through which the most gradient propagates
- Then finds components that the path intersects with
- Algorithmically very similar to “backpropagation”
Computation Graphs

- Any neural network can be expressed as a graph of mathematical operators
- Like an abstract syntax tree
- Vertices represent operators, constants, or parameters
- Edges are directed and represent assignments to function parameters
- Always a DAG
- “Components” are subgraphs of the computation graph
Backpropagation

- Computes the gradient of a loss function with respect to the network’s parameters
- A necessary operation during training
- Can be expressed as a graph
Backpropagation as a Graph

- Edge weights are partial derivatives
 - n.b. a “gradient” is a vector of partial derivatives
- Three simple rules
 - Multiply along paths
 - Sum incoming edges
 - Stop at parameters
- Can be seen as computing sum of all path weights leading into each vertex
 - Where path weight is the product of all edge weights along the path

In accordance with chain rule, multiply received gradient with local gradient wrt input

Accumulate gradients from multiple nodes by adding them together (requires topological sort)

Edge weights are partial derivatives with respect to inputs

Parameter

Mathematical operators
Gradient Tracing as a Graph

Some paths are better than others!

Same procedure as backprop, different semiring (max/argmax of absolute value instead of sum)
Gradient Tracing

- How do we find the path with the highest weight?
- Answer: run backprop with a different semiring
- Instead of sum, take max of absolute value
 - Take argmax to preserve backpointers
- Analogous to the difference between the Forward Algorithm and the Viterbi Algorithm
Backprop vs. Gradient Tracing

Backpropagation (computing total incoming gradient)

\[
g_v = \frac{\partial L}{\partial U} = \begin{cases}
\sum_{(u,v,k) \in E} w(u, v, k) g_u & \text{if } v \neq \ell \\
1 & \text{if } v = \ell
\end{cases}
\]

\[
g'_v = \begin{cases}
\max_{(u,v,k) \in E} |w(u, v, k) g'_u| & \text{if } v \neq \ell \\
1 & \text{if } v = \ell
\end{cases}
\]

Gradient tracing (identifying path with biggest gradient)
Complexity of Backprop and Gradient Tracing

- Every edge and vertex in the computation graph $G = (V, E)$ is visited a fixed number of times
 - Edge weights are summed or max-ed together
- Time complexity for both algorithms is linear: $O(|V| + |E|)$
Enhancement

- What I’ve described so far assumes that all inputs and outputs among operators are scalars.
- But actual neural network implementations use tensor-level operations for performance.
 - Tensor = multi-dimensional array.
- Can use GPUs to accelerate tensor-level operations significantly.
 - Both CPUs and GPUs take better advantage of parallelism and locality when values are grouped into contiguous “tensors”.
- Note that the size of the graph is not the number of vertices and edges in the tensor graph, but in the equivalent scalar graph.
Example Tensor-level Computation Graph

![Tensor-level Computation Graph Diagram]
Implementation Details

- Language: Python
- Library: PyTorch
- Experiments show results on a Python implementation of the closely-related backpropagation algorithm, since it does not require digging into PyTorch primitives
- Problem: Computing the gradient (or gradient trace) for some operations (especially matrix multiplication) requires knowing the values of the inputs
 - PyTorch does not provide access to these through the Python API
- Given a PyTorch representing a loss function, traverses the computation graph, then topologically sorts using Kahn’s Algorithm
 - Must use iterative rather than recursive code to avoid hitting recursion limit
Scaling Results

- Comparison of Python implementation of backprop (including and not including topological sort) and PyTorch’s C++ implementation
 - CPU vs. GPU
 - vs. Number of Layers
 - vs. Batch Size
 - vs. Size of Weight Matrix
 - vs. Graph Size
- Gradient and gradient trace of matrix-vector multiplication
- CPU Model: Intel Core i7-4790, 3.60GHz, 8 cores
- GPU Model: NVIDIA Tesla K40c, 2880 CUDA cores
Time vs. Number of Layers

● Synthetically generated feed-forward neural network with N layers
● All layers have 20 hidden units, input and output are both 10 units
● Graph size is proportional to number of layers
● Scales linearly in number of layers
● Poor parallelization potential
Time vs. Number of Layers

- GPU is twice as slow! -- serial layers are not parallelizable
Time vs. Batch Size

- Synthetically generated feed-forward network with varying batch size
- Higher batch size introduces greater opportunity for parallelism
- 20 layers, 20 hidden units each, input and output are 10 units
- Scales linearly in batch size
Time vs. Batch Size

Time (s) vs. Batch Size (CPU)
- Reimplementation (m = 8.71e-06)
- Reimplementation (No Sort) (m = 8.71e-06)
- PyTorch Implementation (m = 2.68e-06)

Time (s) vs. Batch Size (GPU)
- Reimplementation (m = 1.21e-07)
- Reimplementation (No Sort) (m = 1.21e-07)
- PyTorch Implementation (m = 3.01e-08)
Time vs. Batch Size

![Graph showing Time (s) vs. Batch Size for different implementations with line styles and corresponding slopes.](Image)
Time vs. Weight Matrix Size

- Network with 20 layers, 10 input and output units
- All layers have N hidden units
- Size of weight matrix is quadratic in N
- Time to do matrix-vector multiplication is quadratic in N
- Scales quadratically with N
Time vs. Weight Matrix Size
Time vs. Size of Random Graph

- Randomly generated feed-forward networks with diamond configurations
- Size of equivalent scalar graph is estimated from sizes and types of tensor operations
Random Graph Generation

- Recursively expand vertices using a “vertex replacement grammar”
- Consists entirely of weight matrices and tanh activation functions
- Sizes of tensor operations are sampled randomly from [10, 500]
Random Graph Generation

- Initially $p = 0.99$
- p is divided by number of square vertices on right side (2) to avoid explosion of graph size
Time vs. Size of Random Graph
Time vs. Size of Random Graph
Matrix-vector multiplication gradient/trace

N is size of square matrix
Matrix-vector multiplication gradient/trace
What I Learned

- Inspecting the computation graph in PyTorch is... hard
- GPUs can still do pretty well on small graphs
- Gradient tracing is expensive compared to backpropagation
- In Python, write your graph traversals iteratively, without recursion