
Analyzing Neural Networks with
Gradient Tracing

Brian DuSell

Application
Neural network analysis

● Networks are organized into

logical components

○ Recurrent gates,

differentiable data

structures, etc.

● Let’s try to identify

components that most facilitate

learning

Kernel
“Gradient tracing”

● Finds the path in the

computation graph through

which the most gradient

propagates

● Then finds components that the

path intersects with

● Algorithmically very similar to

“backpropagation”

2

Computation Graphs
● Any neural network can be

expressed as a graph of

mathematical operators

● Like an abstract syntax tree

● Vertices represent operators,

constants, or parameters

● Edges are directed and represent

assignments to function parameters

● Always a DAG

● “Components” are subgraphs of the

computation graph

3

Backpropagation
● Computes the gradient of a loss function with respect to the network’s parameters

● A necessary operation during training

● Can be expressed as a graph

4

Backpropagation as a Graph

Parameter

Mathematical

operators

Edge weights are partial derivatives

with respect to inputs

In accordance with chain rule,

multiply received gradient

with local gradient wrt input

Accumulate gradients from

multiple nodes by adding

them together (requires

topological sort)

5

● Edge weights are partial

derivatives

○ n.b. a “gradient” is a vector

of partial derivatives

● Three simple rules

○ Multiply along paths

○ Sum incoming edges

○ Stop at parameters

● Can be seen as

computing sum of all

path weights leading into

each vertex

○ Where path weight is the

product of all edge weights

along the path

Gradient Tracing as a Graph

Parameter

Mathematical

operators

1) Edge weights are gradients

with respect to inputs

2) In accordance with chain

rule, multiply received

gradient with local gradient

wrt input

3) Accumulate gradients from

multiple nodes by adding

them together (requires

topological sort)

Some paths are better than others!

Same procedure as backprop,

different semiring (max/argmax of

absolute value instead of sum)

6

Gradient Tracing
● How do we find the path with the highest weight?

● Answer: run backprop with a different semiring

● Instead of sum, take max of absolute value

○ Take argmax to preserve backpointers

● Analogous to the difference between the Forward Algorithm and the Viterbi

Algorithm

7

Backprop vs. Gradient Tracing

Backpropagation (computing total incoming gradient)

Gradient tracing (identifying path with biggest gradient)

u

v

8

Complexity of Backprop and Gradient Tracing
● Every edge and vertex in the computation graph G = (V, E) is visited a fixed

number of times

○ Edge weights are summed or max-ed together

● Time complexity for both algorithms is linear: O(|V| + |E|)

9

Enhancement
● What I’ve described so far assumes that all inputs and outputs among operators

are scalars

● But actual neural network implementations use tensor-level operations for

performance

○ Tensor = multi-dimensional array

● Can use GPUs to accelerate tensor-level operations significantly

○ Both CPUs and GPUs take better advantage of parallelism and locality when values are grouped

into contiguous “tensors”

● Note that the size of the graph is not the number of vertices and edges in the

tensor graph, but in the equivalent scalar graph

10

Example Tensor-level Computation Graph

11

Implementation Details
● Language: Python

● Library: PyTorch

● Experiments show results on a Python implementation of the closely-related

backpropagation algorithm, since it does not require digging into PyTorch

primitives

● Problem: Computing the gradient (or gradient trace) for some operations

(especially matrix multiplication) requires knowing the values of the inputs

○ PyTorch does not provide access to these through the Python API

● Given a PyTorch representing a loss function, traverses the computation graph,

then topologically sorts using Kahn’s Algorithm

○ Must use iterative rather than recursive code to avoid hitting recursion limit

12

Scaling Results
● Comparison of Python implementation of backprop (including and not including

topological sort) and PyTorch’s C++ implementation

○ CPU vs. GPU

○ vs. Number of Layers

○ vs. Batch Size

○ vs. Size of Weight Matrix

○ vs. Graph Size

● Gradient and gradient trace of matrix-vector multiplication

● CPU Model: Intel Core i7-4790, 3.60GHz, 8 cores

● GPU Model: NVIDIA Tesla K40c, 2880 CUDA cores

13

Time vs. Number of Layers
● Synthetically generated feed-forward neural network with N layers

● All layers have 20 hidden units, input and output are both 10 units

● Graph size is proportional to number of layers

● Scales linearly in number of layers

● Poor parallelization potential

14

Time vs. Number of Layers

15

● GPU is twice as slow! -- serial layers are not parallelizable

Time vs. Batch Size
● Synthetically generated feed-forward network with varying batch size

● Higher batch size introduces greater opportunity for parallelism

● 20 layers, 20 hidden units each, input and output are 10 units

● Scales linearly in batch size

16

Time vs. Batch Size

17

Time vs. Batch Size

18

Time vs. Weight Matrix Size
● Network with 20 layers, 10 input and output units

● All layers have N hidden units

● Size of weight matrix is quadratic in N

● Time to do matrix-vector multiplication is quadratic in N

● Scales quadratically with N

19

Time vs. Weight Matrix Size

20

Time vs. Size of Random Graph
● Randomly generated feed-forward networks with diamond configurations

● Size of equivalent scalar graph is estimated from sizes and types of tensor

operations

21

Random Graph Generation
● Recursively expand vertices using a

“vertex replacement grammar”

● Consists entirely of weight matrices

and tanh activation functions

● Sizes of tensor operations are sampled

randomly from [10, 500]

22

Random Graph Generation

23

1 - p

p / 2

p / 2

● Initially p = 0.99

● p is divided by number of

square vertices on right side

(2) to avoid explosion of

graph size

Time vs. Size of Random Graph

24

Time vs. Size of Random Graph

25

Matrix-vector multiplication gradient/trace
N is size of square matrix

26

Matrix-vector multiplication gradient/trace

27

What I Learned
● Inspecting the computation graph in PyTorch is… hard

● GPUs can still do pretty well on small graphs

● Gradient tracing is expensive compared to backpropagation

● In Python, write your graph traversals iteratively, without recursion

28

