
Jaccard Coefficients

What is a Jaccard Coefficient?

• Similarity between neighborhoods of two
nodes (V, U):

– Intersection(u,v) = |𝑁 𝑉 ∪ 𝑁(𝑈)|

– Union(u, v) = |𝑁 𝑉 ∩ 𝑁(𝑈)|

– 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑉, 𝑈 =
Intersection(u, v)

Union(u,v)

– 𝑁 𝑉 is the Neighborhood of V

1

Complexity of Computing Jaccard

• To compute Intersection(U, V)

– If lists of neighbors are sorted:

• O(M) – M is max of outdegree of U or V

– If lists of neighbors are sorted first

• O(Mlog(M))

– Otherwise perform repeated searches:

• O(M2)

2

Compute Jaccard With GraphBLAS

• GraphBLAS

– Linear Algebra package to perform graph
operations

– Can be used to compute Jaccard efficiently

– Represent graph G as matrix A, compute A*A=C

– Values in C correspond to the intersection size

– Complexity: O(nnz(A))

3

Jaccard – Compute all pairs

• Can determine 0 value Jaccards to reduce
work

• Intersect[N, N] array

• For each vertex V
– For each vertex U in Neighborhood(V)

• For each W in Neighborhood(U)
– Intersect[V, W]++;

• Any pairs without a value have no shared
neighborhood (intersection is empty)

4

Problems With This Algorithm

1. Compute each Jaccard twice (U, W) and
(W, U)

– Can be solved by checking ordering

– Only count if U > W (based on arbitrary ordering)

2. N2 storage required

– Only need the number of unique two-hop paths

– Could store results in BST but will add to
computational complexity

5

Goal of Project: Utilize High

Bandwidth Memory (HBM)

• Compared to DDR HBM provides:

– Equivalent Latency

– Higher Bandwidth

– Smaller capacity

• HBM is becoming Ubiquitous

– GPU

– KNL

– Taihui Light

6

KNL

• MCDRAM can be configured:
– Cache

– Flat

– Hybrid

• Which mode do we want to use if the problem will not fit in
MCDRAM?

7

Previous Work: Cache-Oblivious

Sorting
• 1.9x speedup over state-of-the-art

• For k threads, each thread sorts 1 / k of the input data

• Each thread runs a divide and conquer sequential sort

– Aggregation of all threads’ working sets fits in MCDRAM

• Once the k sorts complete, GNU multiway merge the results

• Can we adapt this concept to Jaccard?

8

Chunking With Jaccard

• Run in Flat mode

• Bring portion of data in, operate on it, move
next portion in

• Could operate like producer/consumer
problem

9

Two Parallel Algorithms

1. Vertex Level

– Each vertex is a task, threads compute two hop
paths and Jaccard values

– Accounts for imbalance fairly well, since there are
many vertices

2. Spread pairs of vertices among threads

– Easier to ensure no duplicate values are
computed

– Less parallelism during creation of problems

10

Results

11

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Vertex-Level

Pair of vertices

Vertex-Level

Pair of vertices

Vertex-Level

Pair of vertices

C
ac

h
e

Fl
at

Fl
at

C
h

u
n

ke
d

RMAT 50k edges 400k vertices

272 204 136 68

0 1 2 3 4 5 6 7 8 9 10

Vertex-Level

Pair of vertices

Vertex-Level

Pair of vertices

Vertex-Level

Pair of vertices

C
ac

h
e

Fl
at

Fl
at

C
h

u
n

ke
d

RMAT 150k edges 100k vertices

272 204 136 68

Conclusion

• Jaccard is not a bandwidth bound problem

• Poor candidate for MCDRAM

• We can scale fairly efficiently to make use of
hyperthreads

12

Next Steps

• Adapt State of the art Triangle Counting
algorithm to compute Jaccard (uses
GraphBLAS)

• Develop a MPI based strong scaling Jaccard
algorithm

• Streaming algorithms

13

