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Higher Order Networks
How do we represent big data as a network, while 
accurately preserving dependencies?
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Figure from [2]



Higher Order Networks
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Figure from [2]

(Markov model)



Sequential Implementation
Published version written in Python [3]:

1. Extracts all 2 node sequences
2. Checks to see if adding a prefix to a sequence “significantly” changes 

the movement confidence
3. If so, preserve the 3 node sequence as a rule and try extending 

further
4. Repeat until convergence or max order is reached
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Sequential Implementation
My version written in C++:

● Scaled horribly due to repeated 
searches of sequence data

● Python version uses an “indexing 
cache” to store the locations of 
sequences

○ Better performance
○ Large memory footprint
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Enter Fp-Trees [7]
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Figure from [9]



Fp-Trees
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Algorithmic Component Helpful to HON?

Growth*

Extraction**

* No way to efficiently find rules of higher/lower order

** Extraction does not account for sequential ordering



Design & Implementation
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Modified Fp-Tree
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TID Sequence

1 {1, 2, 3, 1, 2, 3}

2 {1, 2, 3, 1, 2, 3}

3 {1, 2, 4, 1, 2, 4}

4 {1, 2, 3, 1, 2, 3}

5 {2, 3, 4, 1, 4, 1}

6 {5, 2, 4, 5, 2, 4}

7 {5, 2, 4, 5, 2, 4}

8 {5, 2, 4, 5, 2, 3}



2D Header Table + Cousin Links
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Pruning the Tree
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Pruning the Tree
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Pruning the Tree
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Pruning the Tree

15DESIGN & IMPLEMENTATION



Pruning the Tree
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Pruned Tree
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Driver Code
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Complexity Analysis

k = total length of data set
m = max order
n = number of unique nodes
Density/sparsity refers to the number of first-order (pairwise) relationships between 
nodes

DESIGN & IMPLEMENTATION 19

Algorithm Time Space

Growing O(k * m) O(n ^ m) - dense
O(n * m) - sparse

Pruning O(n ^ m) - dense
O(n * m) - sparse --



Implementation
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● C++11 using only the standard library (lots of unordered maps - 
possible reallocation issue?)

● Two custom classes: 

○  FpTree: ~300 lines of code

○  FpNode.cpp: ~100 lines of code

● ~480 total lines of code; remaining 80 are driver / header definitions
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Evaluation
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Synthetic Data Sets
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Data Set Number of Records Record Length Total Size Unique 
Nodes

SyntheticFull 10,000 100 1,000,000 100

SyntheticLarge 100,000 100 10,000,000 1,000

SyntheticGiant 1,000,000 100 100,000,000 1,000

SyntheticBalrog 10,000,000 100 1,000,000,000 1,000
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Scalability Experiment
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Application Data Collection Runtime Parameters Iterations

HON2 (CHON) Base Synthetic max_order = 5 40
(10 runs * 4 data sets)

HON+ (Python) Base Synthetic max_order = 99 40
(10 runs * 4 data sets )

HON2 (CHON) Extended Synthetic max_order = 5 40
(10 runs * 4 data sets)

HON2 (CHON) SyntheticGiant only max_order = [3, 4, 5, 6, 7, 8, 9] 70
(10 runs * 7 parameters)

Key metrics: 
● Runtime (wallclock)
● Max vmem usage
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Results: Increasing Total Size
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104.4

2059.2



Results: Increasing Total Size
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104.4

2059.2

CRC 
shenaniganry?



Results: Baseline Comparison
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Synthetic Data Set Extensions

27

Base Data Set Number of Records Record Length Total Size Unique Nodes

SyntheticGiant 10,000 100 1,000,000 10,000 (x10)

SyntheticGiant 100,000 100 10,000,000 100,000 (x100)

SyntheticBalrog 1,000,000 10 (x0.1) 100,000,000 1,000

SyntheticLarge 100,000 1000 (x10) 100,000,000 1,000
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Results: Varying Sequence Length
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Results: Varying Unique Count
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Results: Varying Max Order
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Real-world* Data
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Data Set Number of Records Record Length Total Size Unique Nodes

2018 NY Taxi 
Data 4,306,477 52 223,387,351 266

Each item in the sequence is a “Taxi Zone” in which a trip begins or ends
(http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml)

* I had to artificially link sequences :-(
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Results: NY Taxi Data
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Conclusions
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Scalability achieved 👍 



Future Work
● Fix runtime wall (collisions?)

● Fix pruning accuracy (currently over-prunes)

● Vary graph density

● Parallelize
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Future Work

CONCLUSIONS & FUTURE WORK 36

● Fix runtime wall (collisions?)

● Fix pruning accuracy (currently over-prunes)

● Vary graph density

● Parallelize



References
[1] Xu, J., Wickramarathne, T., & Chawla, N. (2016). Representing higher-order dependencies in networks. Science 
Advances, 2(5), E1600028.
[2] http://www.higherordernetwork.com/
[3] https://github.com/xyjprc/hon
[4] Xu, J., Saebi, M., Ribeiro, B., Kaplan, L., & Chawla, N. (2017). Detecting Anomalies in Sequential Data with Higher-order 
Networks.
[5] Cui Jiao, Guo Jun, Zhang Cangsong, & Chang Xiaojun. (2012). Implementation of random walk algorithm by parallel 
computing. Fuzzy Systems and Knowledge Discovery (FSKD), 2012 9th International Conference on, 2477-2481.
[6] Fournier-Viger, P., Nkambou, R., & Tseng, V. S. M. (2011, March). RuleGrowth: mining sequential rules common to 
several sequences by pattern-growth. In Proceedings of the 2011 ACM symposium on applied computing (pp. 956-961). ACM.
[7] Han, Jiawei, Jian Pei, and Yiwen Yin. "Mining frequent patterns without candidate generation." ACM sigmod record. Vol. 
29. No. 2. ACM, 2000.
[8] Fournier-Viger, Faghihi, Nkambou, and Nguifo. "CMRules: Mining Sequential Rules Common to Several Sequences." 
Knowledge-Based Systems 25, no. 1 (2011): 63-76.
[9] Johnson, Reid. “Mining Association Rules” from Data Mining course at the University of Notre Dame. 
https://www3.nd.edu/~rjohns15/cse40647.sp14/www/content/lectures/11%20-%20FP-Growth%20&%20Evaluation.pdf

CONCLUSIONS & FUTURE WORK 37


