
BuildHON2:
A Scalable Method for Growing

Higher Order Networks
STEVEN KRIEG

SCALABLE GRAPH ALGORITHMS

UNIVERSITY OF NOTRE DAME

Presentation Overview

1. Background & Motivation

2. Design & Implementation

3. Evaluation

4. Conclusions & Future Work

BACKGROUND & MOTIVATION 2

Higher Order Networks
How do we represent big data as a network, while
accurately preserving dependencies?

BACKGROUND & MOTIVATION 3

Figure from [2]

Higher Order Networks

BACKGROUND & MOTIVATION 4

Figure from [2]

(Markov model)

Sequential Implementation
Published version written in Python [3]:

1. Extracts all 2 node sequences
2. Checks to see if adding a prefix to a sequence “significantly” changes

the movement confidence
3. If so, preserve the 3 node sequence as a rule and try extending

further
4. Repeat until convergence or max order is reached

BACKGROUND & MOTIVATION 5

Sequential Implementation
My version written in C++:

● Scaled horribly due to repeated
searches of sequence data

● Python version uses an “indexing
cache” to store the locations of
sequences

○ Better performance
○ Large memory footprint

BACKGROUND & MOTIVATION 6

Enter Fp-Trees [7]

BACKGROUND & MOTIVATION 7

Figure from [9]

Fp-Trees

BACKGROUND & MOTIVATION 8

Algorithmic Component Helpful to HON?

Growth*

Extraction**

* No way to efficiently find rules of higher/lower order

** Extraction does not account for sequential ordering

Design & Implementation

1. Background & Motivation

2. Design & Implementation

3. Evaluation

4. Conclusions & Future Work

DESIGN & IMPLEMENTATION 9

Modified Fp-Tree

DESIGN & IMPLEMENTATION 10

TID Sequence

1 {1, 2, 3, 1, 2, 3}

2 {1, 2, 3, 1, 2, 3}

3 {1, 2, 4, 1, 2, 4}

4 {1, 2, 3, 1, 2, 3}

5 {2, 3, 4, 1, 4, 1}

6 {5, 2, 4, 5, 2, 4}

7 {5, 2, 4, 5, 2, 4}

8 {5, 2, 4, 5, 2, 3}

2D Header Table + Cousin Links

DESIGN & IMPLEMENTATION 11

Pruning the Tree

12DESIGN & IMPLEMENTATION

Pruning the Tree

13DESIGN & IMPLEMENTATION

Pruning the Tree

14DESIGN & IMPLEMENTATION

Pruning the Tree

15DESIGN & IMPLEMENTATION

Pruning the Tree

16DESIGN & IMPLEMENTATION

Pruned Tree

17DESIGN & IMPLEMENTATION

Driver Code

18DESIGN & IMPLEMENTATION

Complexity Analysis

k = total length of data set
m = max order
n = number of unique nodes
Density/sparsity refers to the number of first-order (pairwise) relationships between
nodes

DESIGN & IMPLEMENTATION 19

Algorithm Time Space

Growing O(k * m) O(n ^ m) - dense
O(n * m) - sparse

Pruning O(n ^ m) - dense
O(n * m) - sparse --

Implementation

20

● C++11 using only the standard library (lots of unordered maps -
possible reallocation issue?)

● Two custom classes:

○ FpTree: ~300 lines of code

○ FpNode.cpp: ~100 lines of code

● ~480 total lines of code; remaining 80 are driver / header definitions

DESIGN & IMPLEMENTATION

Evaluation

EVALUATION 21

1. Background & Motivation

2. Design & Implementation

3. Evaluation

4. Conclusions & Future Work

Synthetic Data Sets

22

Data Set Number of Records Record Length Total Size Unique
Nodes

SyntheticFull 10,000 100 1,000,000 100

SyntheticLarge 100,000 100 10,000,000 1,000

SyntheticGiant 1,000,000 100 100,000,000 1,000

SyntheticBalrog 10,000,000 100 1,000,000,000 1,000

DESIGN & IMPLEMENTATION

Scalability Experiment

23

Application Data Collection Runtime Parameters Iterations

HON2 (CHON) Base Synthetic max_order = 5 40
(10 runs * 4 data sets)

HON+ (Python) Base Synthetic max_order = 99 40
(10 runs * 4 data sets)

HON2 (CHON) Extended Synthetic max_order = 5 40
(10 runs * 4 data sets)

HON2 (CHON) SyntheticGiant only max_order = [3, 4, 5, 6, 7, 8, 9] 70
(10 runs * 7 parameters)

Key metrics:
● Runtime (wallclock)
● Max vmem usage

EVALUATION

Results: Increasing Total Size

EVALUATION 24

104.4

2059.2

Results: Increasing Total Size

EVALUATION 25

104.4

2059.2

CRC
shenaniganry?

Results: Baseline Comparison

EVALUATION 26

Synthetic Data Set Extensions

27

Base Data Set Number of Records Record Length Total Size Unique Nodes

SyntheticGiant 10,000 100 1,000,000 10,000 (x10)

SyntheticGiant 100,000 100 10,000,000 100,000 (x100)

SyntheticBalrog 1,000,000 10 (x0.1) 100,000,000 1,000

SyntheticLarge 100,000 1000 (x10) 100,000,000 1,000

EVALUATION

Results: Varying Sequence Length

EVALUATION 28

Results: Varying Unique Count

EVALUATION 29

Results: Varying Max Order

EVALUATION 30

Real-world* Data

31

Data Set Number of Records Record Length Total Size Unique Nodes

2018 NY Taxi
Data 4,306,477 52 223,387,351 266

Each item in the sequence is a “Taxi Zone” in which a trip begins or ends
(http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml)

* I had to artificially link sequences :-(

EVALUATION

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

Results: NY Taxi Data

32EVALUATION

Conclusions & Future Work

1. Background & Motivation

2. Design & Implementation

3. Evaluation

4. Conclusions & Future Work

CONCLUSIONS & FUTURE WORK 33

Conclusions

CONCLUSIONS & FUTURE WORK 34

Scalability achieved 👍

Future Work
● Fix runtime wall (collisions?)

● Fix pruning accuracy (currently over-prunes)

● Vary graph density

● Parallelize

CONCLUSIONS & FUTURE WORK 35

Future Work

CONCLUSIONS & FUTURE WORK 36

● Fix runtime wall (collisions?)

● Fix pruning accuracy (currently over-prunes)

● Vary graph density

● Parallelize

References
[1] Xu, J., Wickramarathne, T., & Chawla, N. (2016). Representing higher-order dependencies in networks. Science
Advances, 2(5), E1600028.
[2] http://www.higherordernetwork.com/
[3] https://github.com/xyjprc/hon
[4] Xu, J., Saebi, M., Ribeiro, B., Kaplan, L., & Chawla, N. (2017). Detecting Anomalies in Sequential Data with Higher-order
Networks.
[5] Cui Jiao, Guo Jun, Zhang Cangsong, & Chang Xiaojun. (2012). Implementation of random walk algorithm by parallel
computing. Fuzzy Systems and Knowledge Discovery (FSKD), 2012 9th International Conference on, 2477-2481.
[6] Fournier-Viger, P., Nkambou, R., & Tseng, V. S. M. (2011, March). RuleGrowth: mining sequential rules common to
several sequences by pattern-growth. In Proceedings of the 2011 ACM symposium on applied computing (pp. 956-961). ACM.
[7] Han, Jiawei, Jian Pei, and Yiwen Yin. "Mining frequent patterns without candidate generation." ACM sigmod record. Vol.
29. No. 2. ACM, 2000.
[8] Fournier-Viger, Faghihi, Nkambou, and Nguifo. "CMRules: Mining Sequential Rules Common to Several Sequences."
Knowledge-Based Systems 25, no. 1 (2011): 63-76.
[9] Johnson, Reid. “Mining Association Rules” from Data Mining course at the University of Notre Dame.
https://www3.nd.edu/~rjohns15/cse40647.sp14/www/content/lectures/11%20-%20FP-Growth%20&%20Evaluation.pdf

CONCLUSIONS & FUTURE WORK 37

