Bipartite Matching

Brian A. Page
bpagelnd.edu
September 18, 2018

The College of Engineerings ¢ ‘4

ar the University of Notre Dame

Bipartite Graphs

* Vertices of a graph G can be

divided into two disjoint sets
Uand V.

 Every edge is of the form (u,v)

* No edges between vertices in
same vertex set

The College of Engineering,

ar the University of Notre Dame

Graph Matching

* |ndependent Edge Set (IES): set of edges in which no two
edges share a common vertex

* Maximal: adding an edge not in M destroys matching

G ST &3

* Maximum : Largest possible IES (can be many)
c;ﬁ (bmii: (c)ii

* Perfect: matches all Vin G

The College of Engineering,

ar the University of Notre Dame

Data Sets

e Suite Sparse Matrix Collection
— https://sparse.tamu.edu/

e SNAP (Stanford Large Network Dataset Collection)
— http://snap.stanford.edu/data/

* Synthetic Graphs

The College of Engineering,

ar the University of Notre Dame

https://sparse.tamu.edu/
http://snap.stanford.edu/data/

Edmonds—Karp

e Based on Ford-Fulkerson
maximum flow method

* O(VE?) or O(V?E) time
depending on
implementation

ool Rc e
E@® O @B 6
©)

z
Qo
z
3
B

7he College of Engineering

ar the University of Notre Dame

Edmonds-Karp

algorithm EdmondsKarp
input:
graph (graph[v] should be the list of edges coming out of vertex v.
Each edge should have a capacity, flow, source and sink as parameters,
as well as a pointer to the reverse edge.)

s (Source vertex)

t (Sink vertex)
output:

flow (value of maximum flow)
flow := 0 (Initialize flow to zero)
repeat

(Run a bfs to find the shortest s-t path.
We use 'pred' to store the edge taken to get to each vertex,
so we can recover the path afterwards)
q := queue()
g.push(s)
pred := array(graph.length)
while not empty(q)
cur := g.pull()
for Edge e in graph[cur]
if pred[e.t] = null and e.t # s and e.cap > e.flow
pred(e.t] = e
g.push(e.t)

if not (pred(t] = null)

(We found an augmenting path.

See how much flow we can send)

df := ®

for (e := pred[t]; e # null; e := pred[e.s])
df := min(df, e.cap - e.flow)

(And update edges by that amount)

for (e := pred[t]; e # null; e := pred[e.s])
e.flow := e.flow + df
e.rev.flow := e.rev.flow - df

flow := flow + df

httpS//enWIklpedlaOrg/Wlkl/ until pred{t] = null (i.e., until no augmenting path was found)
EdmondS—Karp_a|gorithm return flow

The College of Engineering,

ar the University of Notre Dame

Hopcroft-Karp

* Based on Push-relabel (maximum flow)

® Uses BFS to partition vertices into matched and unmatched
* Swaps edges in/out of matching

* Local vs global path augmentations

Input: Bipartite graph G(U U V', E)

Output: Matching M C E

M« 0

repeat
P+ {Py, Ps,..., P} maximal set of vertex-disjoint shortest augmenting paths
M+« MasPUPU---UP)

until P = 0

* Runsin O(|E|,/|V])

The College of Engineering,

ar the University of Notre Dame

Hopcroft-Karp

function DFS (u)

/* if u != NIL
G =UUVWV U {NIL} for each v in Adj[u]
where U and V are partition of graph and NIL is a special null vertex if Dist[Pair_V([v]] == Dist[u] + 1
*/ if DFS(Pair_V[v]) == true
Pair V[v] = u
Pair U[u] = v

function BFS ()

for each u in U return true

if Pair Ufu] == NIL Diit[“]f=lm
Distu] = 0 return false
Enqueue (Q,u) return true
elseDist[u] - ® function Hopcrogt—Karp
DiSt[NIL] = ® for ea?h uin U
. Pair U[u] = NIL
while Empty(Q) == false o each_v in v
u = Dequeue(Q) Pair V[v] = NIL
if Dist[u] < Dist[NIL] matching_= 0
for each v in Adj[u] while BFS() == true
if Dist[Pair V[v]]| == ® for each u in U
Dist[Pair V([v]] = Dist[u] + 1 if Pair U[u] == NIL
Enqueue(Q,Pair_V[v]) if DFS(u) == true
return Dist[NIL] != = matching = matching + 1

return matching

The College of Engineering,

ar the University of Notre Dame

Distributed Bipartite Matching

Pros

* Performance via strong scaling
® Larger graphs
* Shorter comp. time (hopefully)

Cons

 QGreatly increase complexity
e Time now dependent on system and network

The College of Engineering,

ar the University of Notre Dame

Distributed Bipartite Matching

Basic Distributed Sequential Algorithm:
Given G(v,e) and process count P:

assign vertices such that |Pi(v)| = |P;(v)]

distribute work

Perform BM on G via some method

if P, interacts with vertex st. v €P;(v)

alert P; st v €P;(v)
continue comp on P;

return matching

The College of Engineering,

ar the University of Notre Dame

Distributed Bipartite Matching

* Parallel Distributed BM possibilities:

— Connected components

— Cut vertex separation / sub-graph assignment
— 7

e (Questions to answer:
— What can be parallelized?

— How do we limit communication?
— What other elements limit scalability and performance?

The College of Engineering,

ar the University of Notre Dame

References

® Jeremy Kepner and John Gilbert. 2011. Graph Algorithms in the Language of
Linear Algebra. Soc. for Industrial and Applied Math., Philadelphia, PA, USA.

® https://en.wikipedia.org/wiki/Bipartite_graph

® https://en.wikipedia.org/wiki/Matching_(graph_theory)#Bipartite_matching

® https://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-
problem/

® https://en.wikipedia.org/wiki/Hungarian_algorithm#The_algorithm_in_terms_o
f bipartite_graphs

® https://www.geeksforgeeks.org/hopcroft-karp-algorithm-for-maximum-
matching-set-1-introduction/

[

https://en.wikipedia.org/wiki/Assignment_problem

The College of Engineering,

ar the University of Notre Dame

