Bipartite Matching

Brian A. Page
bpage1nd.edu
September 18, 2018
Bipartite Graphs

- Vertices of a graph \(G \) can be divided into two disjoint sets \(U \) and \(V \).
- Every edge is of the form \((u,v)\)
- No edges between vertices in same vertex set
- Assignment problem, transportation problem, etc.
Graph Matching

• **Independent Edge Set (IES):** set of edges in which no two edges share a common vertex

• **Maximal:** adding an edge not in M destroys matching

• **Maximum:** Largest possible IES (can be many)

• **Perfect:** matches all V in G
Data Sets

• Suite Sparse Matrix Collection
 – https://sparse.tamu.edu/

• SNAP (Stanford Large Network Dataset Collection)
 – http://snap.stanford.edu/data/

• Synthetic Graphs
Edmonds–Karp

- Based on Ford-Fulkerson maximum flow method
- $O(VE^2)$ or $O(V^2E)$ time depending on implementation
Edmonds-Karp

```plaintext
algorithm EdmondsKarp
  input:
  graph (graph[v] should be the list of edges coming out of vertex v.
  Each edge should have a capacity, flow, source and sink as parameters,
  as well as a pointer to the reverse edge.)
  s (Source vertex)
  t (Sink vertex)
  output:
  flow (Value of maximum flow)
  flow := 0 (Initialize flow to zero)
  repeat
    (Run a bfs to find the shortest s-t path.
    We use 'pred' to store the edge taken to get to each vertex,
    so we can recover the path afterwards)
    q := queue()
    q.push(s)
    pred := array(graph.length)
    while not empty(q)
      cur := q.pull()
      for Edge e in graph[cur]
        if pred[e.t] = null and e.t ≠ s and e.cap > e.flow
          pred[e.t] := e
          q.push(e.t)
      if not (pred[t] = null)
        (We found an augmenting path.
        See how much flow we can send)
        df := ∞
        for (e := pred[t]; e ≠ null; e := pred[e.s])
          df := min(df, e.cap - e.flow)
        (And update edges by that amount)
        for (e := pred[t]; e ≠ null; e := pred[e.s])
          e.flow := e.flow + df
          e.rev.flow := e.rev.flow - df
        flow := flow + df
      until pred[t] = null (i.e., until no augmenting path was found)
  return flow
```

Hopcroft-Karp

• Based on Push-relabel (maximum flow)
• Uses BFS to partition vertices into matched and unmatched
• Swaps edges in/out of matching
• Local vs global path augmentations

\[
\text{Input: } \text{Bipartite graph } G(U \cup V, E) \\
\text{Output: } \text{Matching } M \subseteq E \\
M \leftarrow \emptyset \\
\text{repeat} \\
\quad \mathcal{P} \leftarrow \{P_1, P_2, \ldots, P_k\} \text{ maximal set of vertex-disjoint shortest augmenting paths} \\
\quad M \leftarrow M \oplus (P_1 \cup P_2 \cup \cdots \cup P_k) \\
\text{until } \mathcal{P} = \emptyset
\]

• Runs in \(O(|E| \sqrt{|V|}) \)
Hopcroft-Karp

/*
 * G = U U V U {NIL}
 * where U and V are partition of graph and NIL is a special null vertex
 */

function BFS ()
 for each u in U
 if Pair_U[u] == NIL
 Dist[u] = 0
 Enqueue(Q,u)
 else
 Dist[u] = \infty
 Dist[NIL] = \infty
 while Empty(Q) == false
 u = Dequeue(Q)
 if Dist[u] < Dist[NIL]
 for each v in Adj[u]
 if Dist[Pair_V[v]] == \infty
 Dist[Pair_V[v]] = Dist[u] + 1
 Enqueue(Q,Pair_V[v])

 return Dist[NIL] != \infty

function DFS (u)
 if u != NIL
 for each v in Adj[u]
 if Dist[Pair_V[v]] == Dist[u] + 1
 if DFS(Pair_V[v]) == true
 Pair_V[v] = u
 Pair_U[u] = v
 return true

 Dist[u] = \infty
 return false
 return true

function Hopcroft-Karp
 for each u in U
 Pair_U[u] = NIL
 for each v in V
 Pair_V[v] = NIL
 matching = 0
 while BFS() == true
 for each u in U
 if Pair_U[u] == NIL
 if DFS(u) == true
 matching = matching + 1
 return matching
Distributed Bipartite Matching

Pros

• Performance via strong scaling
• Larger graphs
• Shorter comp. time (hopefully)

Cons

• Greatly increase complexity
• Time now dependent on system and network
Distributed Bipartite Matching

Basic Distributed Sequential Algorithm:

Given $G(v,e)$ and process count P:

assign vertices such that $|P_i(v)| = |P_j(v)|$

distribute work

Perform BM on G via some method

if P_i interacts with vertex st. $v \notin P_i(v)$

alert P_j st $v \notin P_j(v)$

continue comp on P_j

return matching
Distributed Bipartite Matching

• Parallel Distributed BM possibilities:
 – Connected components
 – Cut vertex separation / sub-graph assignment
 – ???

• Questions to answer:
 – What can be parallelized?
 – How do we limit communication?
 – What other elements limit scalability and performance?
References

• https://en.wikipedia.org/wiki/Bipartite_graph
• https://en.wikipedia.org/wiki/Matching_(graph_theory)#Bipartite_matching
• https://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/
• https://en.wikipedia.org/wiki/Hungarian_algorithm#The_algorithm_in_terms_of_bipartite_graphs
• https://www.geeksforgeeks.org/hopcroft-karp-algorithm-for-maximum-matching-set-1-introduction/
• https://en.wikipedia.org/wiki/Assignment_problem