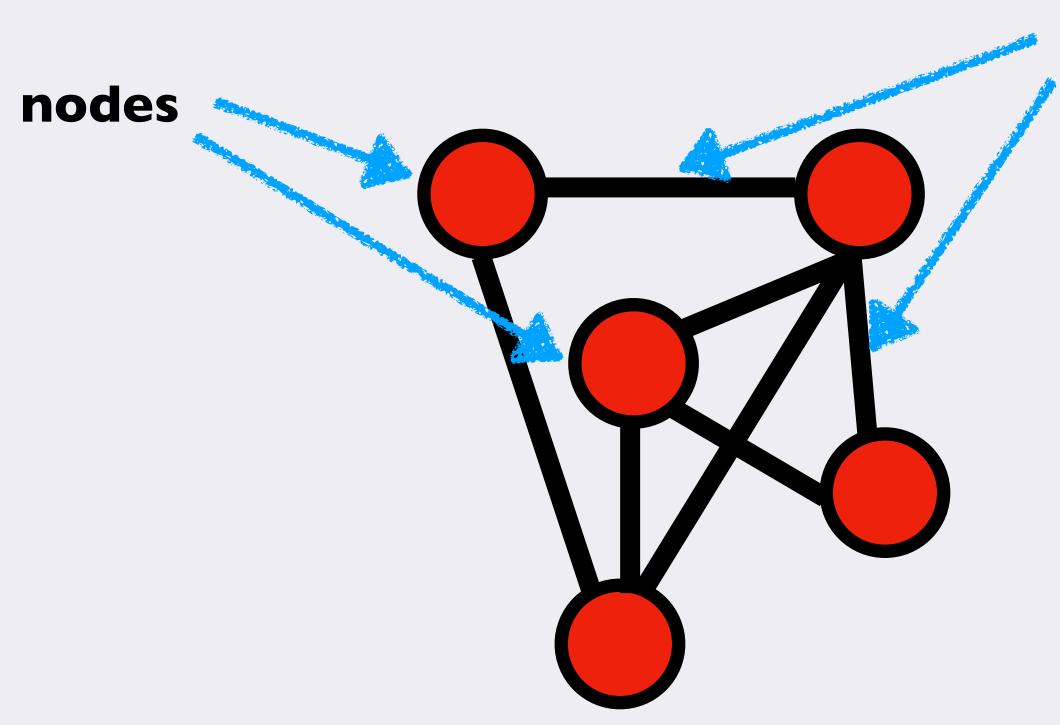


Community Detection

Satyaki Sikdar 2nd year Ph.D. student

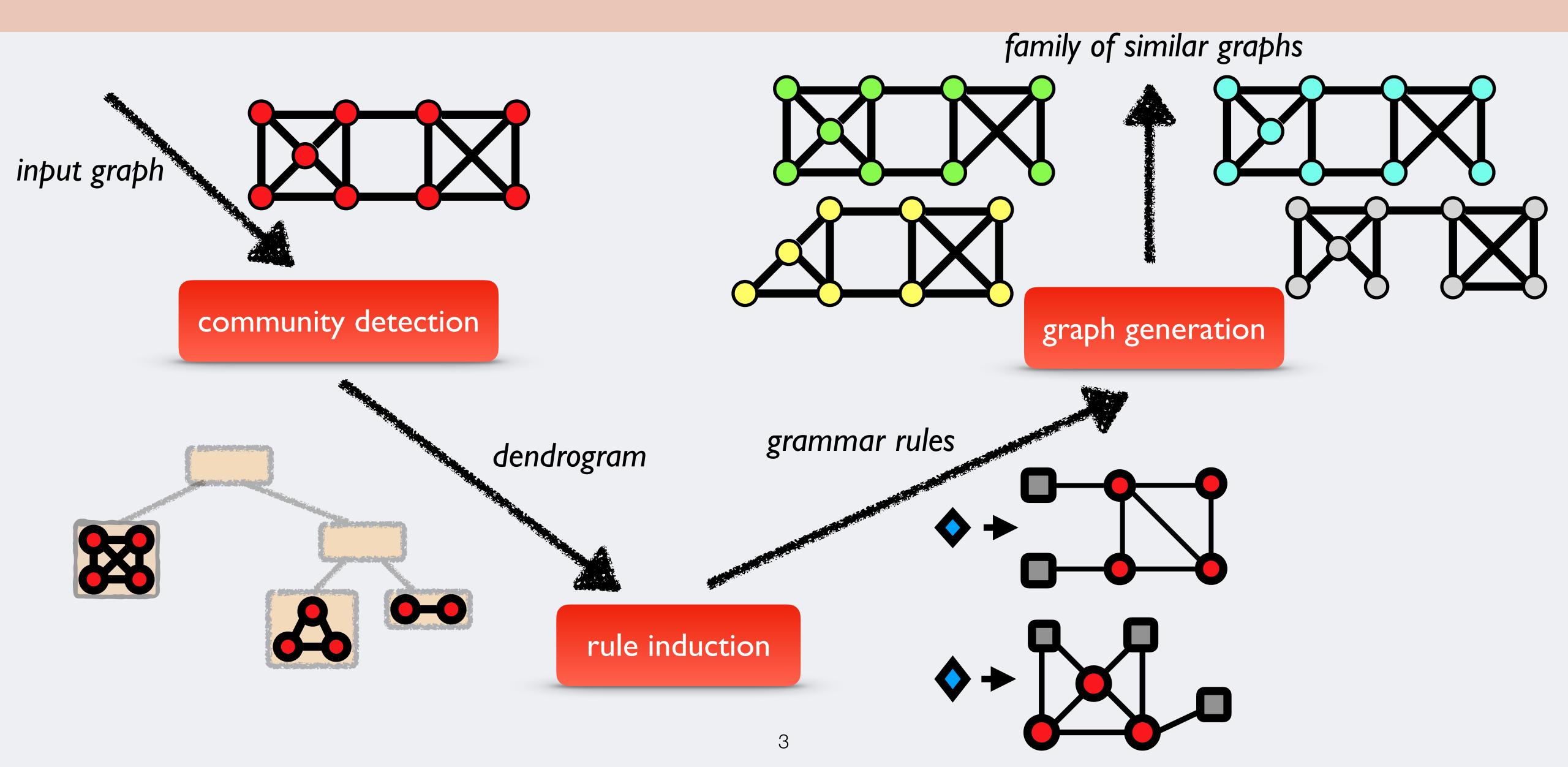
networks - what are they?



edges

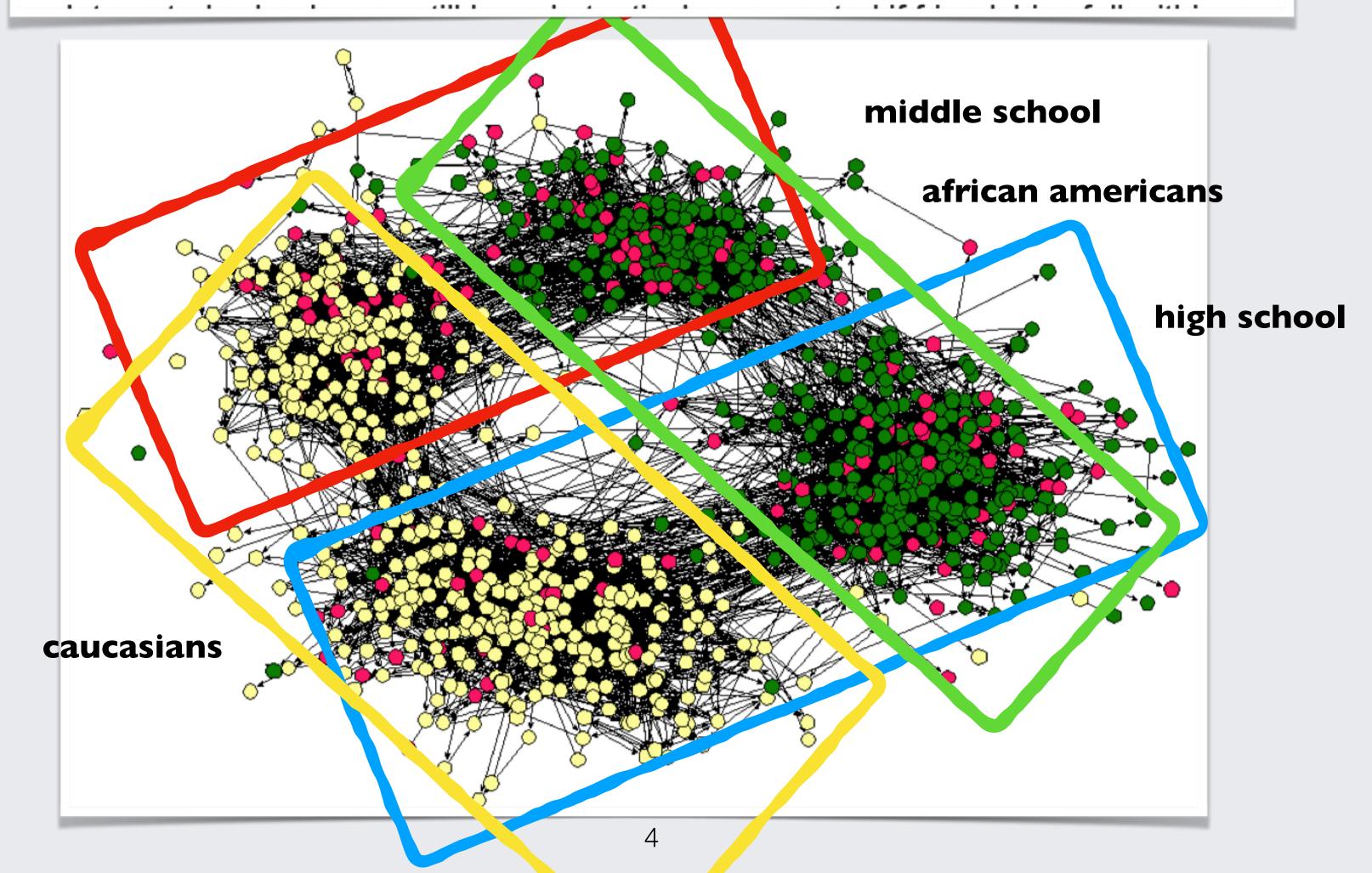
domain	nodes	edges
world wide web	webpages	hyperlinks
scientific papers	papers	citations
power grids	generating stations	transmission lines
flights	airports	non-stop flights
friendships	person	friendship
food web	species	predation

my research pipeline



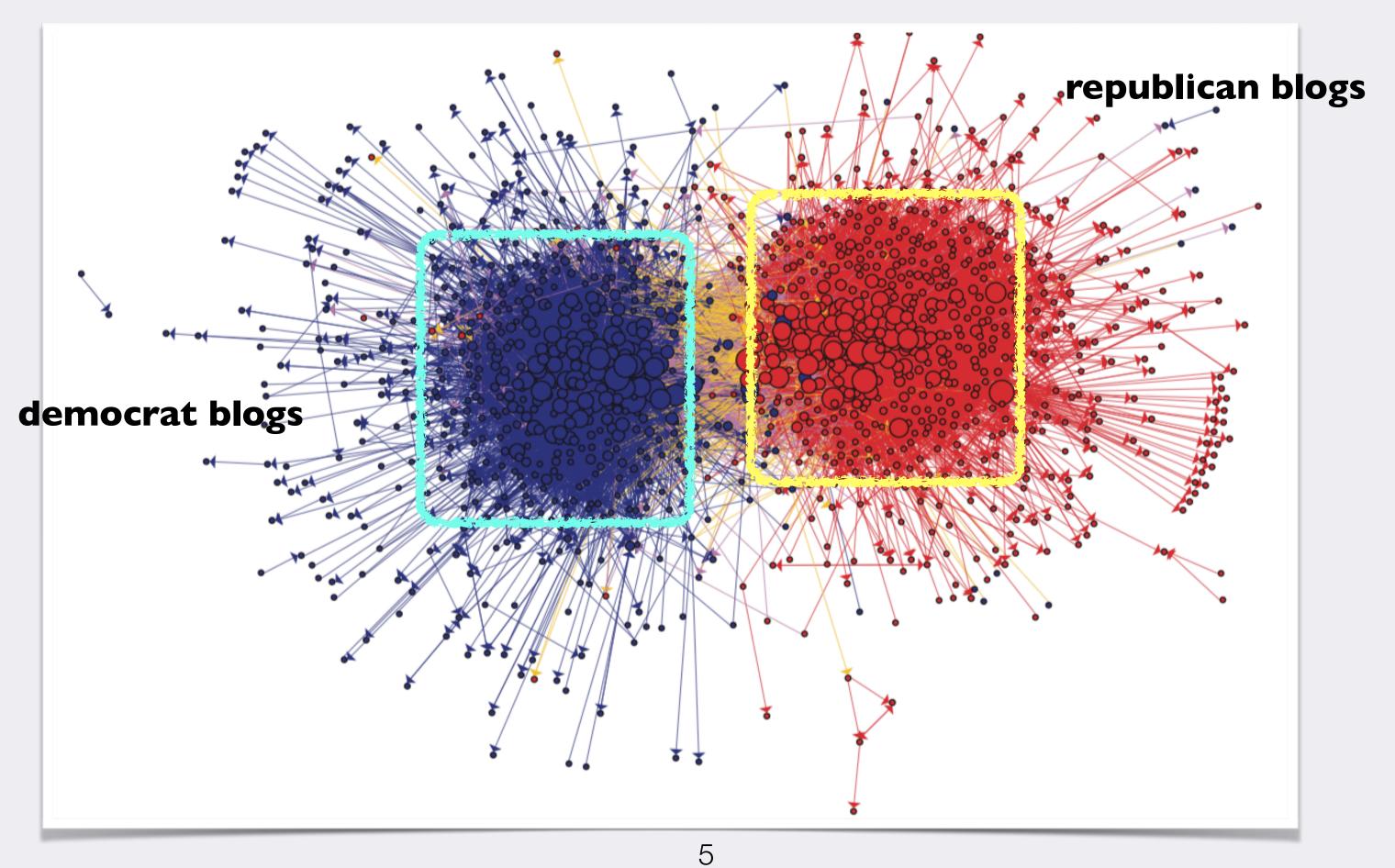
racial and social homophily

Race, school integration, and friendship segregation in America J Moody - American journal of Sociology, 2001 - journals.uchicago.edu



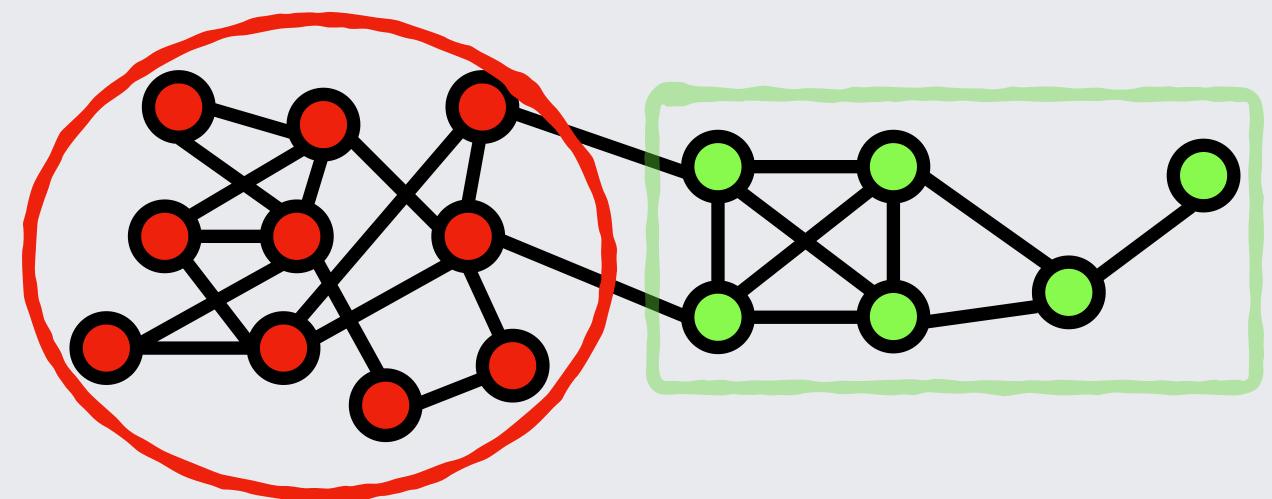
political homophily

The political blogosphere and the 2004 US election: divided they blog LA Adamic, N Glance - Proceedings of the 3rd international workshop on ..., 2005 - dl.acm.org



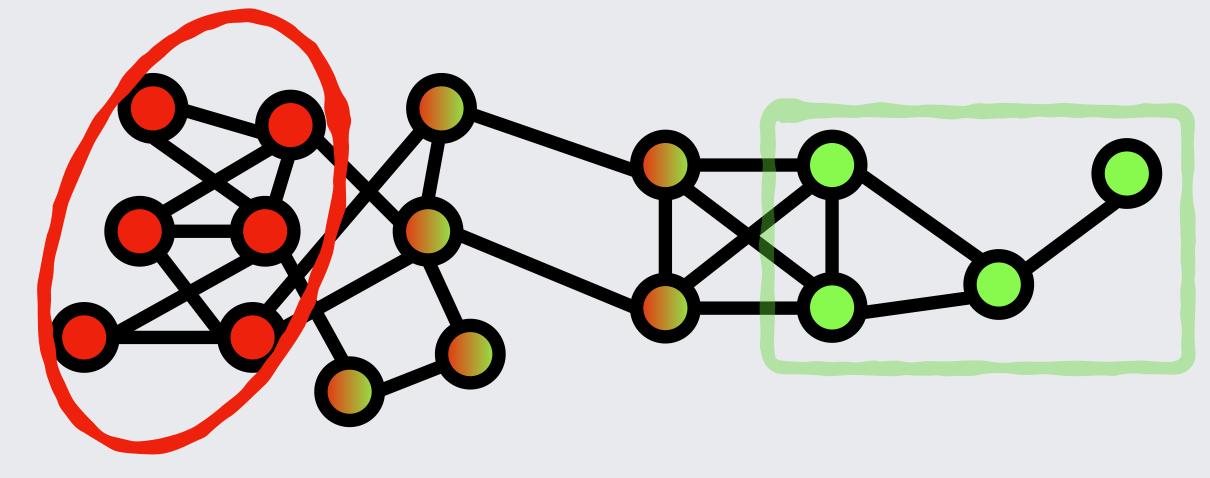
community detection

In a graph G(V, E), find a cover $\mathbb{C} = \{C_1, \dots, C_k\}$ such that $\bigcup_i C_i = V$



disjoint

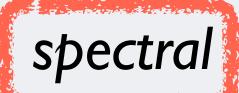
$$C_i \cap C_j = \emptyset \quad \forall i, j$$



overlapping

$$C_i \cap C_j \neq \emptyset \quad \exists i, j$$

popular techniques



Normalized cuts and image segmentation

J Shi, J Malik - IEEE Transactions on pattern analysis and ..., 2000 - ieeexplore.ieee.org

• eigenvalues and eigenvectors of adjacency / Laplacian matrix

traversal based

Near linear time algorithm to **detect community** structures in large-scale networks

UN Raghavan, R Albert, S Kumara - Physical review E, 2007 - APS

discovery of local neighborhoods and bridges

greedy optimization

Fast unfolding of communities in large networks

VD Blondel, JL Guillaume, R Lambiotte... - Journal of statistical ..., 2008 - iopscience.iop.org

• agglomerative or divisive hierarchical clustering

information theory based

The map equation

M Rosvall, D Axelsson, CT Bergstrom - The European Physical Journal ..., 2009 - Springer

• graph compression through encodings

random walks

Computing communities in large networks using random walks

P Pons, M Latapy - International symposium on computer and information ..., 2005 - Springer

distribution of node visits through multiple random walks

[PDF] On spectral clustering: Analysis and an algorithm

AY Ng, MI Jordan, Y Weiss - Advances in neural information ..., 2002 - papers.nips.cc

Fast detection of community structures using graph traversal in social networks P Basuchowdhuri, S Sikdar, V Nagarajan... - ... and Information Systems, 2017 - Springer

General optimization technique for high-quality **community detection** in complex networks

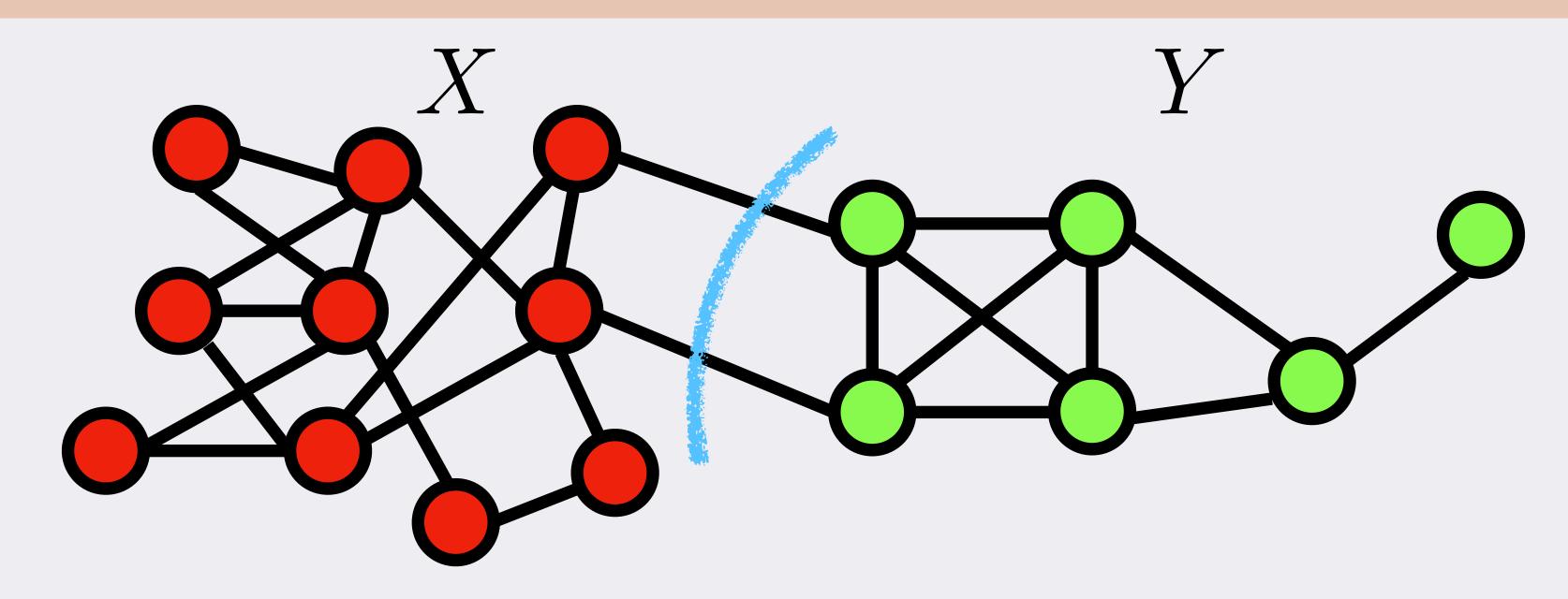
S Sobolevsky, R Campari, A Belyi, C Ratti - Physical Review E, 2014 - APS

Clique percolation in random networks

I Derényi, G Palla, T Vicsek - Physical review letters, 2005 - APS

Efficient and principled method for detecting communities in networks B Ball, B Karrer, MEJ Newman - Physical Review E, 2011 - APS

graph partitioning - cuts



degree

$$d_i = \sum_j \mathbf{A}_{ij}$$

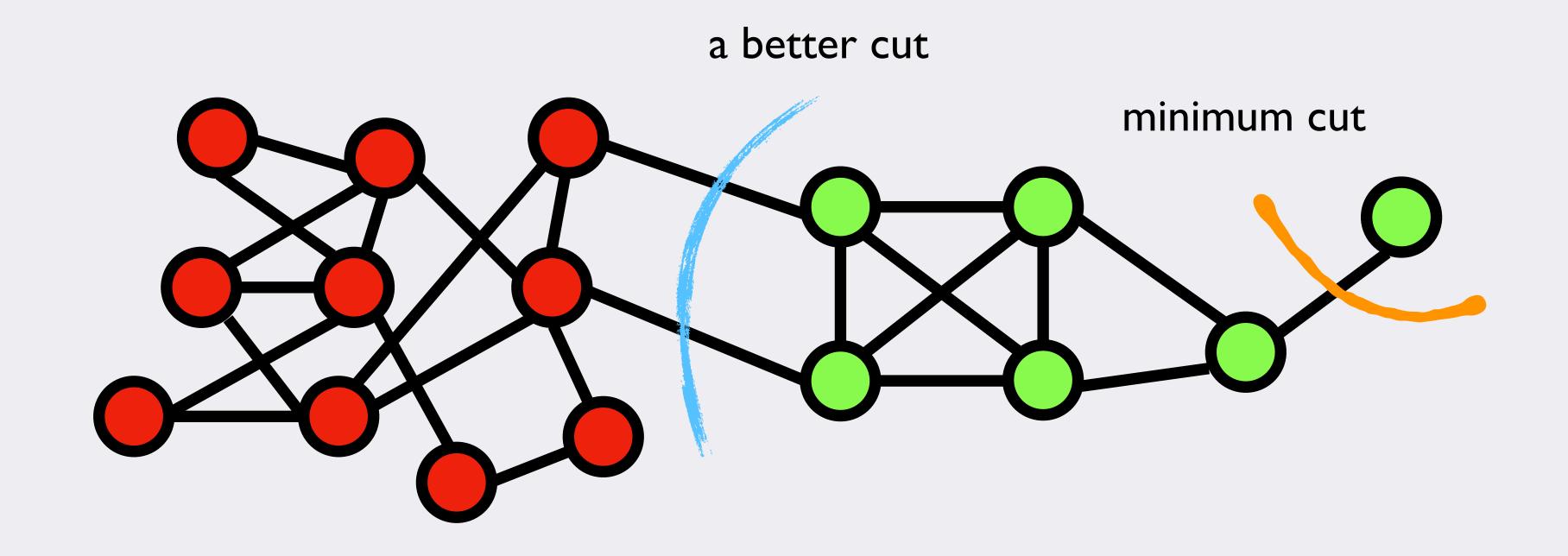
volume

$$\operatorname{vol}(X) = \sum_{j \in X} d_i$$

cut

$$\operatorname{vol}(X) = \sum_{j \in X} d_i \qquad \operatorname{cut}(X, Y) = \sum_{i \in X, j \in Y} \mathbf{A}_{ij}$$

graph partitioning - cuts



min cut is not necessarily the **best** cut

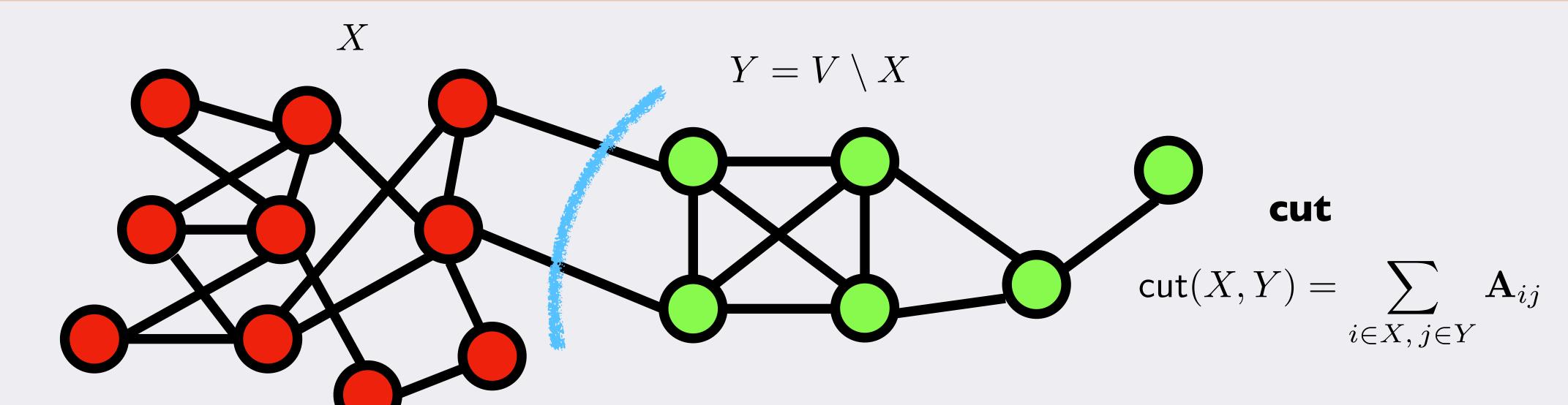
graph partitioning - quality measures

degree

$$d_i = \sum_j \mathbf{A}_{ij}$$

volume

$$\operatorname{vol}(X) = \sum_{j \in X} d_i$$



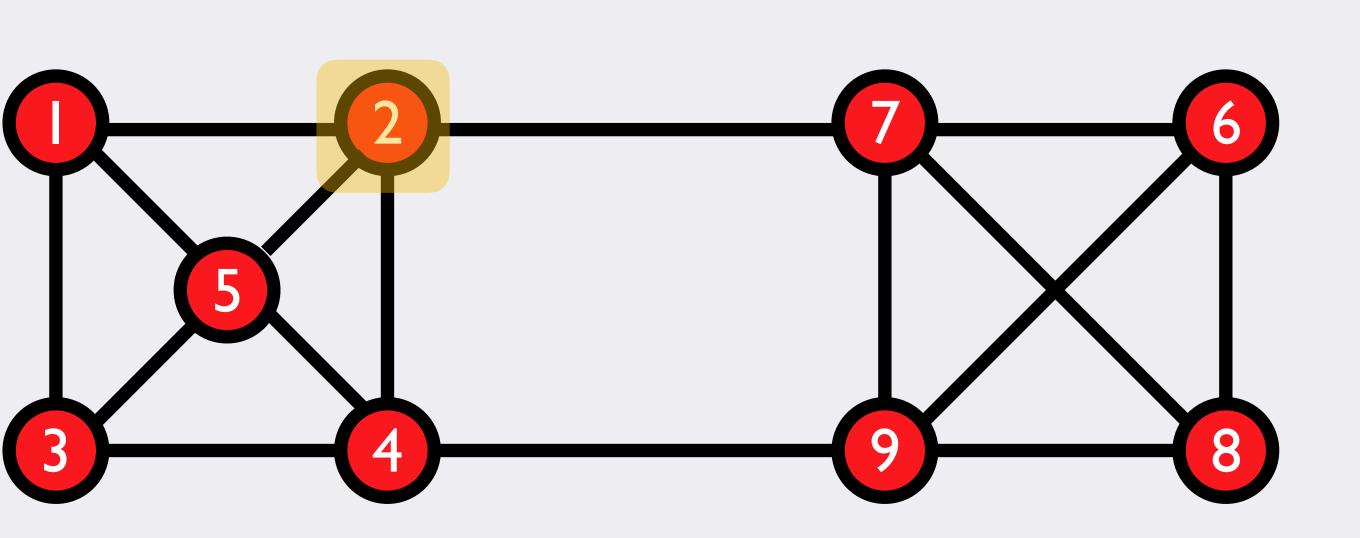
conductance

$$\phi(X) = \frac{\operatorname{cut}(X, V \setminus X)}{\min\{\operatorname{vol}(X), \operatorname{vol}(V \setminus X)\}}$$

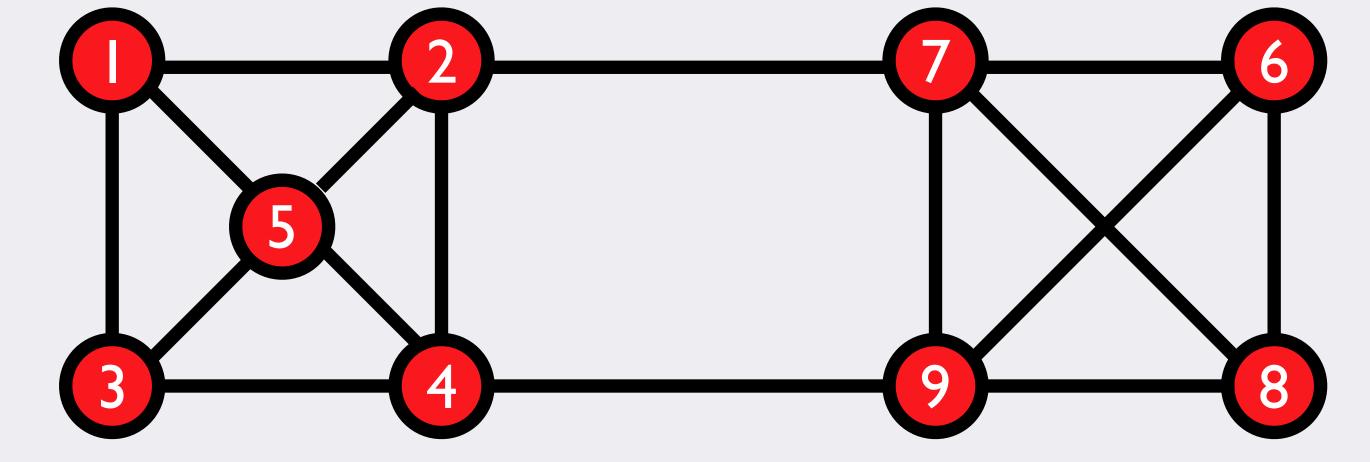
normalized cut

$$\operatorname{ncut}(X) = \frac{\operatorname{cut}(X, V \setminus X)}{\operatorname{vol}(X)} + \frac{\operatorname{cut}(X, V \setminus X)}{\operatorname{vol}(V \setminus X)}$$

example network



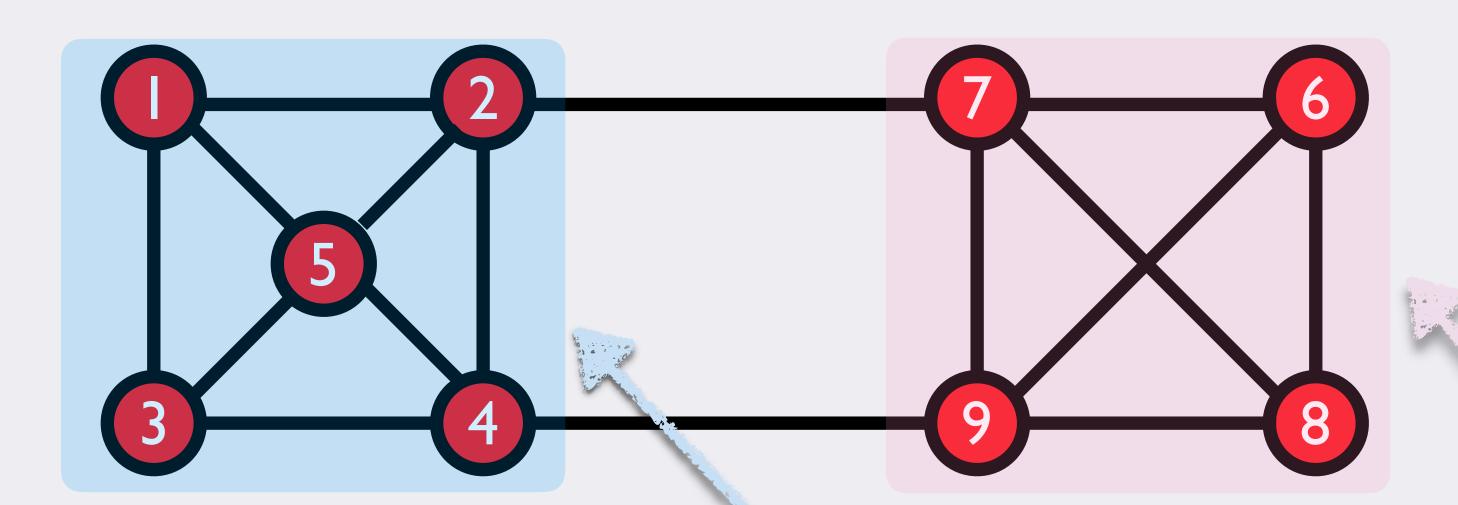
A	1	2	3	4	5	6	7	8	9
	0 1 0	I	I	0	I	0	0	0	0
2	1	0	0	1	1	0	1	0	0
3	I	0	0	I	I	0	0	0	0
4	0	I	I	0	I	0	0	0	ı
5	1	I	I	I	0	0	0	0	0
6	0	0	0	0	0	0	I	I	I
7	0	I	0	0	0	I	0	I	I I 0
8	0	0	0	0	0	I	I	0	I
9	0	0	0		0			1	0



$$L = D - A$$

D	-	2	3	4	5	6	7	8	9	A	-	2	3	4	5	6	7	8	9	L	1 2	2	3	4	5	6	7	8	9
_	3									I		I	I		I					Π	3 -	l	-		-				
2		4								2	ı			I	I		I			2	- 4	4		-1	-		- I		
3			3							3	ı			I	I					3	- I		3	-1	-				
4				4						4		I	I		I				ı	4	-	I	-	4	-				-1
5					4					5	ı	I	I	I						5	-1 -	I	-	-1	4				
6						3				6							I	I	I	6						3	- I	-1	-1
7							4			7		ı				ı		I	I	7	-	I				-1	4	- I	-1
8								3		8						I	I		I	8						-1	-	3	-1
9									4	9				I		I	I	I		9				-1		-1	-1	- I	4

$Lx = \lambda x$



L	ı	2	3	4	5	6	7	8	9
	3	-	-1	- I - I - I	-1				
2	-1	4		- I	- 1		- 1		
3	-1		3	- I	-1				
4		- 1	-1	4	-1				-1
5	-1	- 1	-1	- I	4				
6						3	- I	-1	-1
7		-				-1	4	-1	-1
8						-1	-	3	-1
9				- l		-1	- I	-1	4

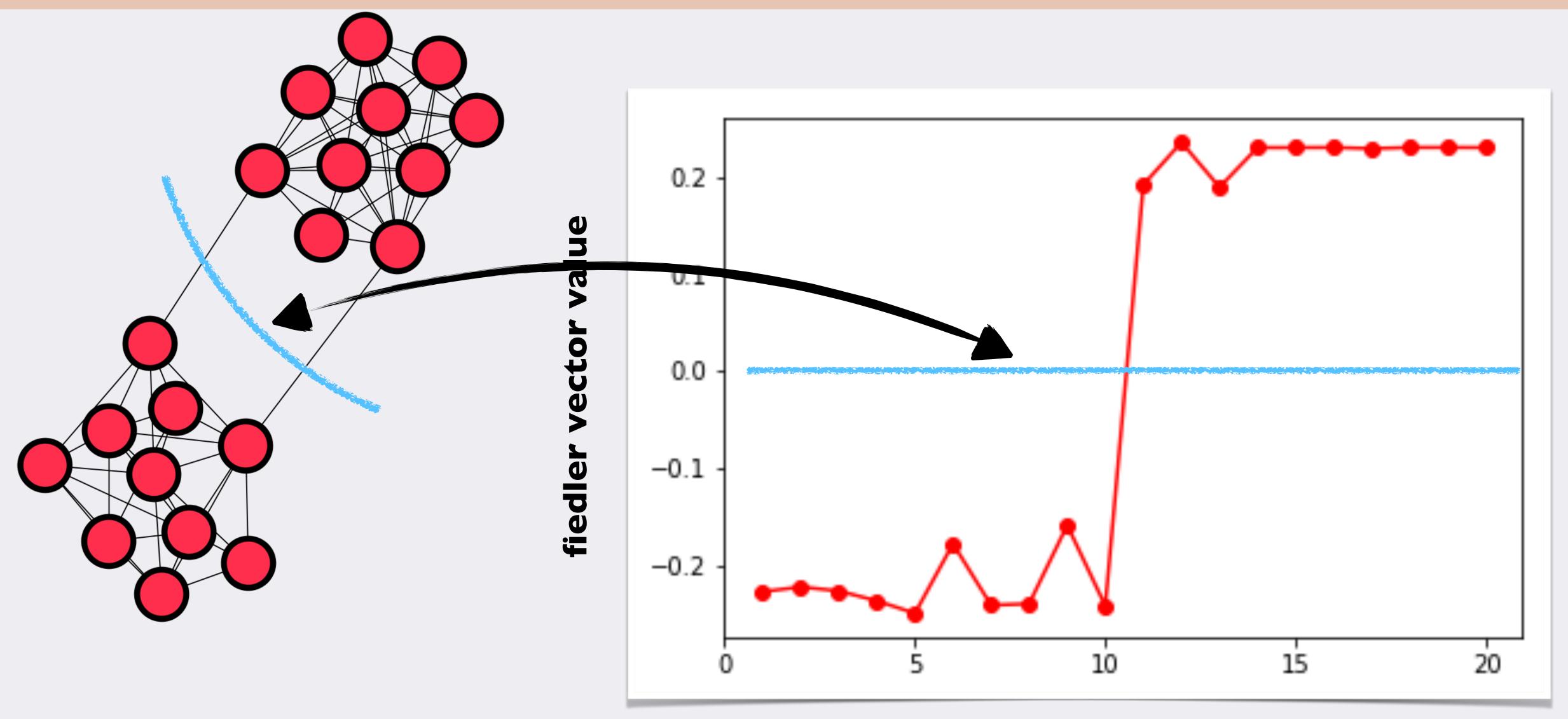
sorted eigenvalues

$$\begin{pmatrix}
9.540 \, \text{e} - 17 \\
6.498 \, \text{e} - 01 \\
3.198 \\
3.326 \\
4 \\
4.554 \\
4.641 \\
5.382 \\
6.246
\end{pmatrix}$$

fiedler vector

1	(-0.378)	
2	-0.178	
3	-0.378	
4	-0.332	
5	-0.178	
6	0.291	
7	0.291	Eni.
8	0.431	
9	$\setminus 0.431$	

bipartition



k-way partitions

recursive bipartitions

New spectral methods for ratio cut partitioning and clustering

L Hagen, AB Kahng - ... transactions on computer-aided design of ..., 1992 - ieeexplore.ieee.org

- hierarchical divisive clustering based on median / fixed value
- disadvantages: unstable, computationally expensive

Normalized cuts and image segmentation

J Shi, J Malik - IEEE Transactions on pattern analysis and ..., 2000 - ieeexplore.ieee.org

clustering multiple eigenvectors

[PDF] On spectral clustering: Analysis and an algorithm

AY Ng, MI Jordan, Y Weiss - Advances in neural information ..., 2002 - papers.nips.cc

- spectral embedding of nodes and then k-means
- more efficient than recursive bipartitions

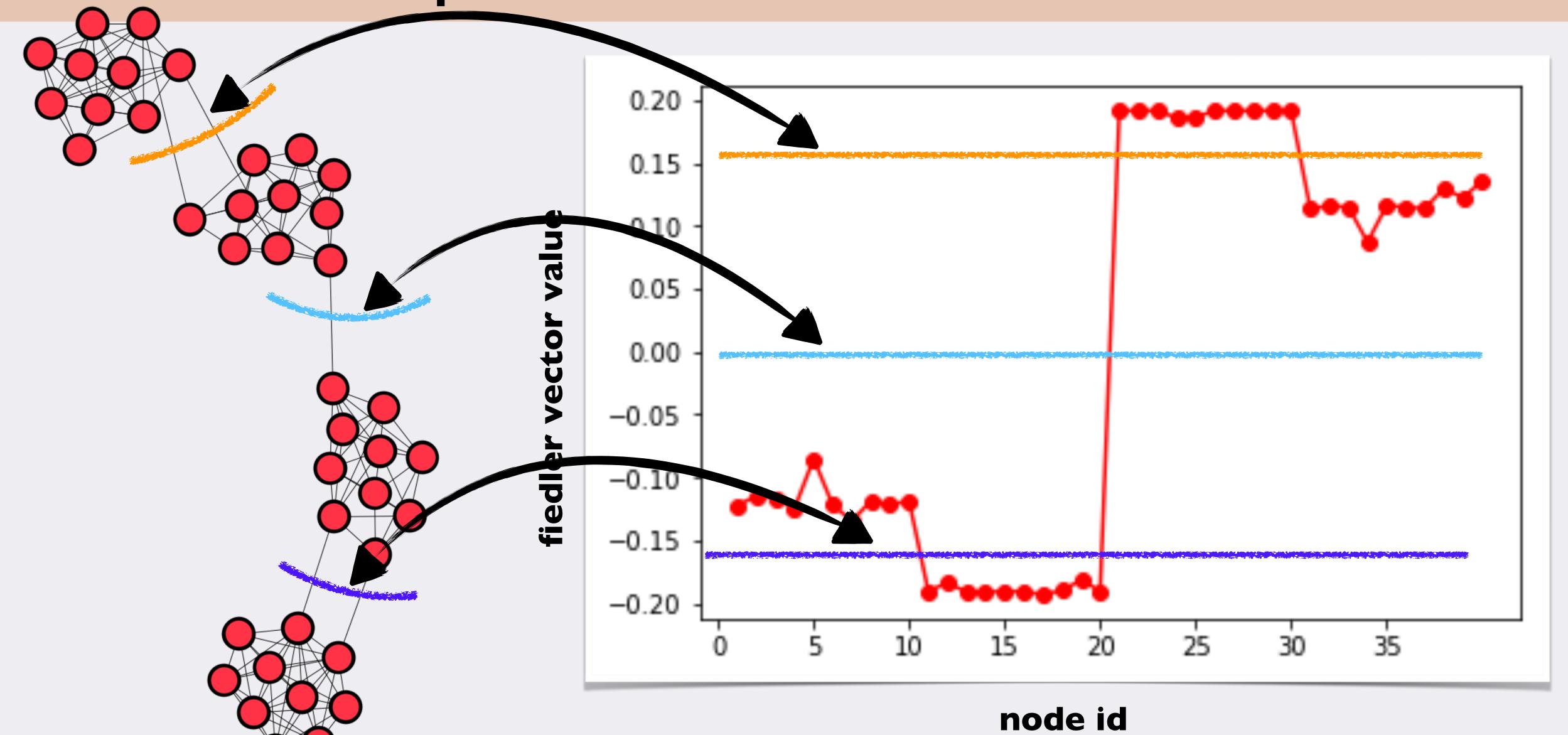
pseudocode

```
Algorithm 1: approx_min_cut(G, k)
 1 begin
        tree \leftarrow empty list
        if G \ has \leq k \ nodes \ \mathbf{then}
           return nodes in G
        end
        if G is not connected then
                                                                               \mathcal{O}(n^3)
            foreach connected component p of G do
               Append approx_min_cut(p, k) to tree
            end
 9
            return tree
10
        end
11
       \texttt{fiedler} \leftarrow \text{Fiedler vector of } G
\bf 12
        p_1 \leftarrow \text{node ids with value less than the median of fiedler}
13
        p_2 \leftarrow \text{rest of the nodes in } G
14
        SG_1 \leftarrow \text{subgraph induced by } p_1 \text{ on } G
15
        SG_2 \leftarrow \text{subgraph induced by } p_2 \text{ on } G
16
        Append approx_min_cut(SG_1, k) to tree
17
        Append approx_min_cut(SG_2, k) to tree
18
        return tree
20 end
```

$$T(n) \approx 2T\left(\frac{n}{2}\right) + \mathcal{O}(n^3)$$

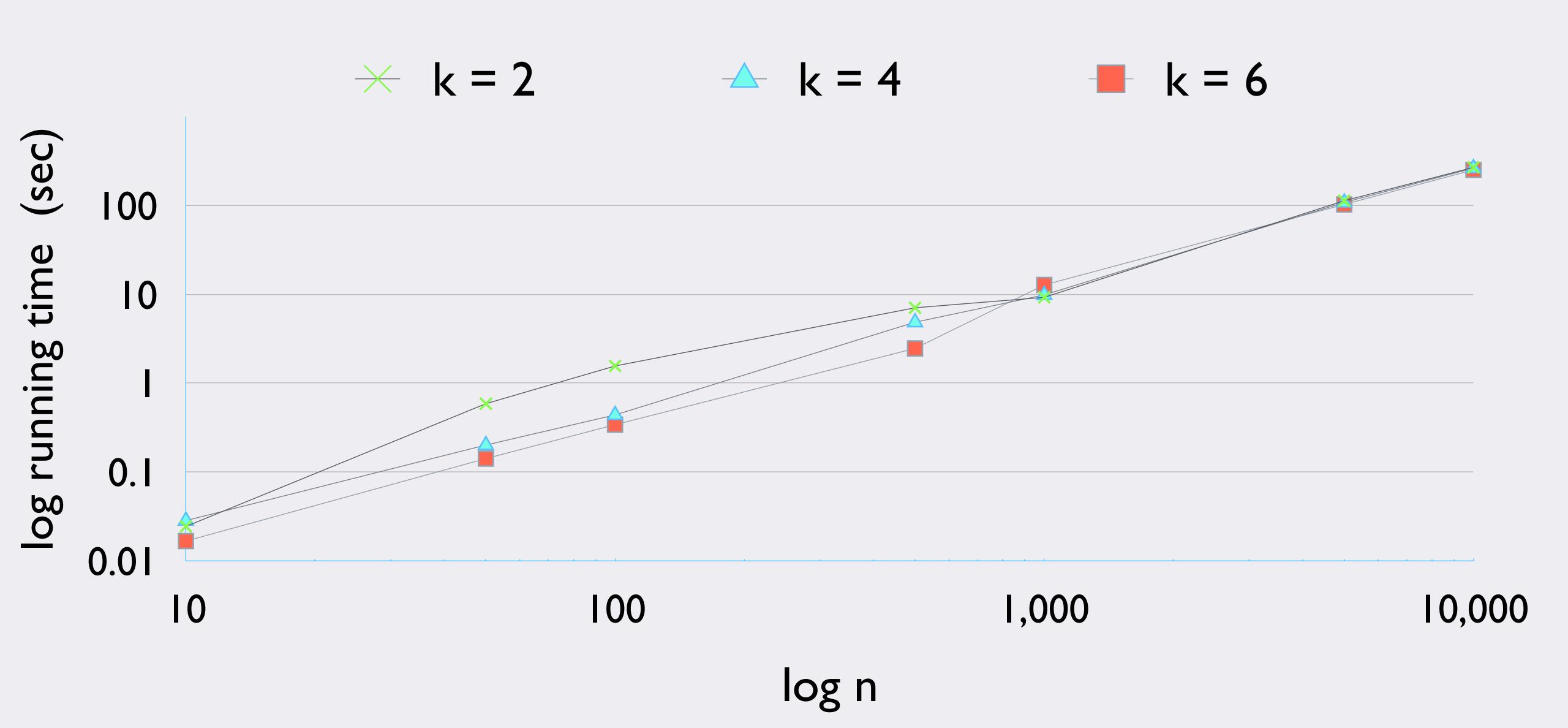
$$T(n) = \Theta(n^3)$$

recursive bipartition

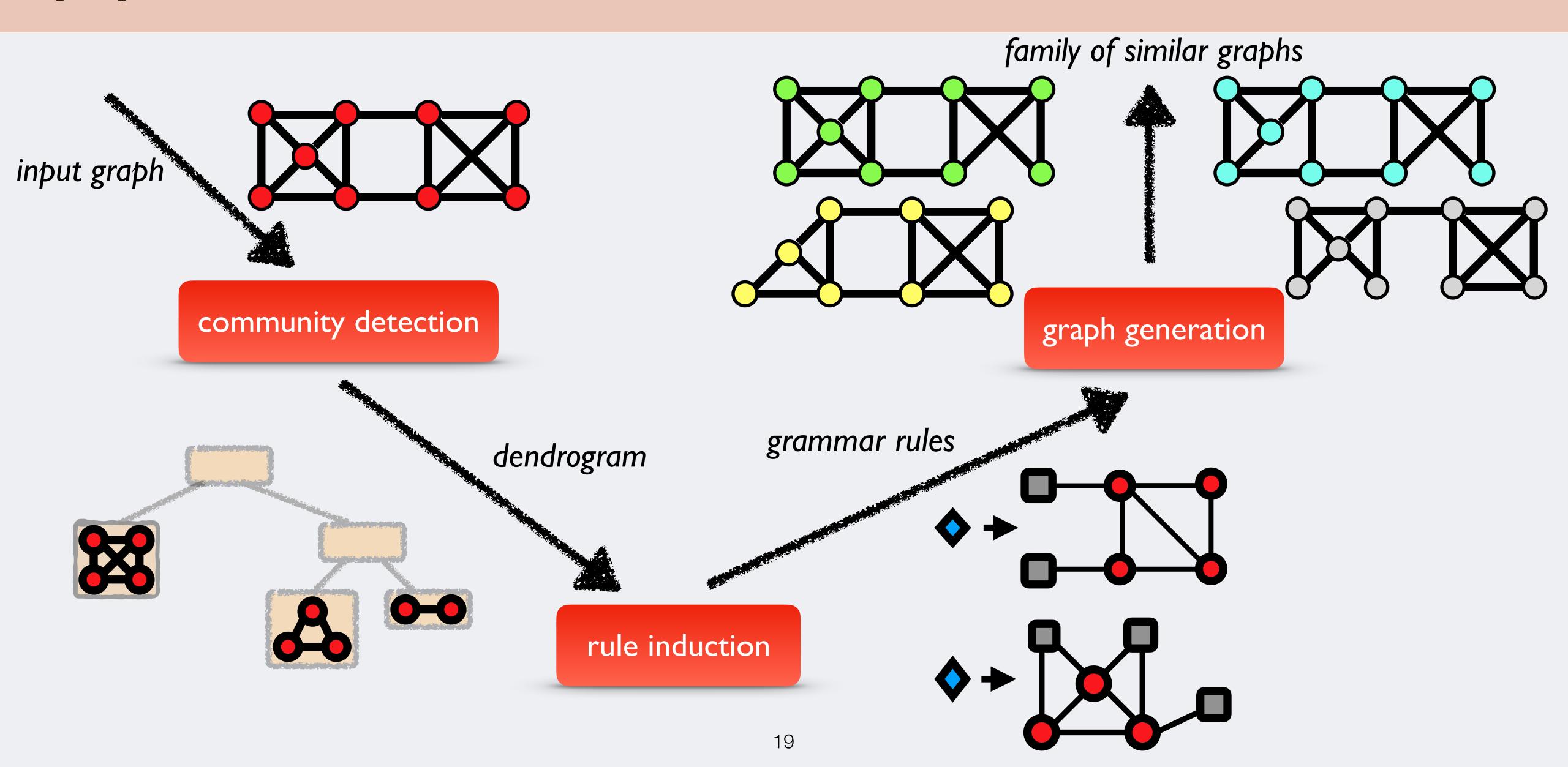


17

running times



pipeline revisited



thanks!