
Depth-First Search and Its Use Case in
Distributed Systems Debugging

Nate Kremer-Herman

2

3

Give us 10,000 machines, please.

4

Let’s look at an example.

5

6

7

Debugging distributed systems

Hard to determine if an early task caused one later on to fail.
Tasks run on different machines, OSs, and clusters.

How do we track how/when task n set task n+100 up to fail?

How do we comb through a lineage of processes and
configurations? BFS? DFS? Heuristic traversal algorithms?

8

What is the end-user application?

Given a very large and complex task lineage trace.
In each node are env. variables set/consumed for that task.

Use DFS to explore this tree and track the env. variables.
Tool assists user in correcting configurations for bad tasks.

How can we parallelize this tree exploration efficiently?
At what scale does it become efficient?

Depth-first search kernel

Given a large graph.
Start at a root node.
Find all reachable vertices.
Measured in TEPS, just like BFS.

Worst case performance:
O(|V| + |E|)

9

10

Notional sequential algorithm

1. Select some arbitrary node (root node if tree).
2. Explore each branch as far as possible,

keeping track of visited nodes.
3. When the current branch is exhausted,

backtrack to last unexplored branch.

11

Iterative pseudocode

1 procedure DFS-iterative(G,v):
2 let S be a stack
3 S.push(v)
4 while S is not empty
5 v = S.pop()
6 if v is not labeled as discovered:
7 label v as discovered
8 for all edges from v to w in G.adjacentEdges(v) do
9 S.push(w)

12

Recursive pseudocode

1 procedure DFS(G,v):
2 label v as discovered
3 for all edges from v to w in G.adjacentEdges(v) do
4 if vertex w is not labeled as discovered then
5 recursively call DFS(G,w)

13

Questions?

Please clap.

