Graph Similarity Scoring Applied to Abstract Meaning Representation

Justin DeBenedetto

Abstract Meaning Representation (AMR)

 AMRs are a semantic formalism which models sentences

Abstract Meaning Representation (AMR)

- AMRs are a semantic formalism which models sentences
 - Nodes represent concepts
 - Edges represent relations between concepts
 - Semantic roles
 - ARG0 = Agent
 - ARG1 = Patient
 - Example AMR for sentence: "John wants Mary to believe him."

Properties of AMRS as Graphs

- Some properties of AMRs
 - Directed Acyclic Graphs (DAGs)
 - Single rooted (focus of sentence)
 - Each AMR represents a sentence

Dataset

- Set of 10,312 AMRs from various news sources
- Average number of nodes is: 17.1
- Average number of edges is: 17.1
- More than half are trees

Dataset

5

Application

- Given multiple candidate AMRs, find best one
- Use some AMRs for training
 - Need a way to score each choice
 - Want pairwise digraph similarity score

Kernel: Graph Similarity Scoring

- Want to assess similarity of a pair of graphs
- Several measures exist:
 - Degree distribution
 - Diameter
 - Clustering coefficient
- We have node and edge labels
 - Typical for AMR is SMATCH

SMATCH

- Semantic Match score
 - Find best matching of nodes
 - Score based on node and edge labels
 - F1 score
 - Node label
 - For each edge: edge type and end points

Pseudocode

For every node mapping: For each node pairing: If labels match: correct++ Else: wrong++ For each edge from nodes: If endpoint matches: correct++ Else: wrong++

9

Complexity

- Most direct way (previous slide) has complexity ~O(N!|N+E|)
 - N = number of nodes in graph
 - E = number of edges
- In practice, we want to prioritize matching correct labels together

10

- ~O((N-k)!|N+E|)
 - k = number of matched labels

SMATCH Evaluation

- SMATCH is used as an evaluation metric for AMR generation
- Only works when we have a "gold" AMR to evaluate against

11

Can be made efficient

My Research

- Scoring without "gold" AMR
- Learn local weights to score likelihood of nodes and edges
- Combine local weights efficiently into a global score

12

- Use this to rerank
- Evaluate test AMRs scored this way using SMATCH score