Graph Similarity Scoring
Applied to
Abstract Meaning Representation

Justin DeBenedetto
Abstract Meaning Representation (AMR)

- AMRs are a semantic formalism which models sentences
Abstract Meaning Representation (AMR)

- AMRs are a semantic formalism which models sentences
 - Nodes represent concepts
 - Edges represent relations between concepts
 - Semantic roles
 - ARG0 = Agent
 - ARG1 = Patient
 - Example AMR for sentence: “John wants Mary to believe him.”
Properties of AMRS as Graphs

● Some properties of AMRs
 ○ Directed Acyclic Graphs (DAGs)
 ○ Single rooted (focus of sentence)
 ○ Each AMR represents a sentence
Dataset

- Set of 10,312 AMRs from various news sources
- Average number of nodes is: 17.1
- Average number of edges is: 17.1
- More than half are trees
Dataset

AMR Node Counts

AMR Edge Counts

Number of AMRs vs. Number of Nodes

Number of AMRs vs. Number of Edges
Application

• Given multiple candidate AMRs, find best one
• Use some AMRs for training
 – Need a way to score each choice
 – Want pairwise digraph similarity score
Kernel: Graph Similarity Scoring

• Want to assess similarity of a pair of graphs
• Several measures exist:
 – Degree distribution
 – Diameter
 – Clustering coefficient
• We have node and edge labels
 – Typical for AMR is SMATCH
SMATCH

• Semantic Match score
 – Find best matching of nodes
 – Score based on node and edge labels
 – F1 score
 • Node label
 • For each edge: edge type and end points
Pseudocode

For every node mapping:
 For each node pairing:
 If labels match: correct++
 Else: wrong++
 For each edge from nodes:
 If endpoint matches: correct++
 Else: wrong++
Complexity

• Most direct way (previous slide) has complexity $\sim O(N!|N+E|)$
 – $N = \text{number of nodes in graph}$
 – $E = \text{number of edges}$

• In practice, we want to prioritize matching correct labels together
 – $\sim O((N-k)!|N+E|)$
 • $k = \text{number of matched labels}$
SMATCH Evaluation

- SMATCH is used as an evaluation metric for AMR generation
- Only works when we have a “gold” AMR to evaluate against
- Can be made efficient
My Research

- Scoring without “gold” AMR
- Learn local weights to score likelihood of nodes and edges
- Combine local weights efficiently into a global score
- Use this to rerank
- Evaluate test AMRs scored this way using SMATCH score