
Graph Guided Genetic

Algorithms
Kyle Sweeney

Understanding Genetic Algorithms
Part 1: the Problem

1e100

X=(12.4,“No-go”,22,…)

f(x)

Understanding Genetic Algorithms
Part 2: Just Copy Nature

 Solution == DNA

 e.g (12.4,“No-go”,22,…)

 Fitness function

 A method for determining how “good” a solution is

 Can be a score, where higher is better

 Breeding

 Combine DNA in different ways

 E.g (12.4, “No-go”,22,…) + (-3, “Go”, “9) == 2X possible combinations

 Survival of the Fittest

Understanding Genetic Algorithms
Part 3: Inbreeding is Bad

1e100

f(x)

Understanding Genetic Algorithms
Part 4: Or why the X-Men are the Best

 Need a method of

ensuring Genetic

Variability

 Mutations ensure that

we’ll jump around the

curve

Graph Guided Genetic Algorithms
Just cheating off of nature some more

Application: Genetic Engineering

Group of 3
nucleotides == 1

Amino Acid

43 = 64 combinations

There are redundancies + start and stop codons

Amino Acids –
building blocks of

proteins
20 in all: (Tryptophan, Valine, Glutamine….)

ACGT – building
blocks of DNA

“Nucleotide”

Humans and Bacteria are Different

CGT: 0.123

CGC: 0.334

CGA: 0.462

CGG: 0.111

CGT: 0.121

CGC: 0.235

CGA: 0.461

CGG: 0.213

Min-Max Estimations

The Problem

 22 Possible Start/Stop/Amino Acids, 64 Codons, and DNA length of N

 For a given sequence, roughly 4 possible alternatives for a given Codon

 Search Space: 4N

Solution: Genetic Algorithms to solve

Genetic Engineering Problems

 “DNA”: the specific Codon encodings which generate the same Protein

 Fitness Function: | MinMax human −MinMax SolutionInBacteria |

 Breeding:

 Zip Children: for each position, alternate between taking from parents

 Skip Children: Zip Children where zip_num > 2

 Random Children: randomly choose from parents

 Half and Half: first half one parent, second half the other

 ….

 Take top 10 each generation

How Graphs Made things Different

 Graph Based Evolutionary Algorithms by Bryden K.M. et al

 Take a graph and place a potential solution on each vertex

 The only mating partners for that vertex are its neighbors

 Choose from potential mates who to mate with

 Only replace parent if child is better than parent

The Graph I Used

Pseudocode

 Take target DNA strand, and create 20 Random variations, place one on each

vertex in the graph

 For i in range(100):

 For v in graph.vertex():

 Children = []

 For n in graph.neighbors(v):

 Children.add(breed(n,v,10))

 Sort(children)

 If children[0].score < v:

 Graph.replace(v,children[0])

 Return sort(graph.vertex())[0]

Results

Future Direction

 Add more graphs and start timing, analyzing time and score based on

different graphs and their properties

 Multi-thread the breeding process

