Streaming Changes of Centrality of UAV Networks

Joshua Huseman
Application – Drone Networking

• Mesh Network of UAVs
 • Wi-Fi links between UAVs
 • Signal strength decreases as UAVs get further apart
 • A few UAVs linked to the Ground Control Station (GCS)
 • Each needs to communicate with the GCS
 • Can either communicate directly or through another UAV
 • Overhead cost when communicating through other UAVs
Kernel – Best Network Layout

• Central UAVs can act as “hubs” for other UAVs, providing communication with the GCS
 • Overhead cost to the hub in passing other UAVs’ communication

• Determine “best” UAVs to use as hubs
 • Closeness centrality seems like a good option
Kernel – Incremental / Distributed Changes

• UAVs move, changing the shape of the network
 • Evolving the network will improve performance compared to rebuilding after each change

• Distributed algorithm
 • A decentralized, distributed algorithm allows UAVs to determine the network’s structure independently
Data Sets

• generated randomly
 • random walk/diffusion pattern of UAV movements
 • communication signal strength based on distance (with maximum bound)

• I may have access to some data logs from previous flights/simulations for more realistic data

Screenshot of Dronology project UI during a previous test
Pseudocode – Closeness

• For each node x
 • Initialize farness variable to 0
 • For each node y
 • Calculate shortest path between x and y
 • (Maybe use Dijkstra’s algorithm)
 • Simple implementation worst case O(n^2)
 • Better implementation O(e + n log(n))
 • Add shortest path length to farness variable
 • Closeness(x) = (# nodes) / farness

• Time complexity:
 • O(e n^2 + n^3 log(n))
 • (e = # edges)
 • (n = # nodes)
Pseudocode – Building Network (Tree Traversal?)

• Order nodes by closeness (descending)

• While there are remaining nodes:
 • Set first node as a hub
 • Find shortest path to any existing hub or GCS
 • Set all of these nodes as hubs

• When setting node as hub:
 • Remove node and all directly connected nodes from list of remaining nodes
 • Add all directly connected nodes to list of “slaves” for the new hub
Still Unknown/Working Out Details

• Faster algorithms
 - Time complexity quite slow – great optimization needed
 - Slight imperfections in the results may be acceptable for time efficiency

• Distributed algorithm implementation
 - Not sure yet how to do this with incomplete knowledge of graph

• Is Closeness the best measure to use?
 - Another measure, like # adjacent edges, etc. might be better (and faster)

• Benchmarking
 - Method for analyzing/comparing the efficiency of the created network after generation
Resources

 • Equation used for implementation

• https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
 • Time complexity of Dijkstra’s Algorithm

• https://dronology.info/
 • Information on UAV project
 • Used for picture on Data Sets slide