Higher Order Networks
& BuildHon+

Steven Krieg

The Problem

How do we represent big data as a network, while
accurately preserving dependencies?

Quite a problem, indeed...

First-order network

Image from [1]

A Solution!

Raw event sequence data

B—W—0 E—W
B—— E—MW
B—W—0 E—W
B—W—0 E—W0

Extract higher-order dependenciesl

29,
-
-
)

from raw event sequences

Higher-order dependencies

75% (X) 25% , (%)

o=@ o=@

25% (Y) 75% (Y)

First-order network

Qx)\ 50% (X)

Count number of
pairwise interactions
as edge weights

Higher-order network
Construct HON

based on the
extracted rules

—

Image from [2]

First-order network

Image from [1]

Random Walker Results*

D Simulate 1 step [BSimulate 2 steps [Simulate 3 steps

Lhbhbh

1st-order 2nd-order HON, max HON, max HON, max HON, max
network network order2 order3 order 4 order 5

Accuracy (%)

Image from [1]

*The goal of this experiment was not link prediction but to
demonstrate the improvement in representation using HON.

HON Highlights

-is a network representation of a weighted
digraph

-rewires the existing network so that nodes
represent a series rather than a singular
entity

-enables higher accuracy without needing
new analysis tools/algorithms

HON Applications

-ranking (PageRank, etc.)
-anomaly detection
-NLP
-social
-biology
-etc...

The Kernel: BuildHon

Algorithm used to construct the HON

Has 2 main steps:
1. Rule extraction
2. Network rewiring

Step 1: Rule Extraction

Count the number of sequential node interactions at the first-order
(basically the normal network)

2. Normalize the distributions for each pairwise interaction

3. For each fork node, add the preceding step and see how that changes
the distribution of the sequence

4. If the change is “significant” (above a selected threshold), add a
second-order dependency and repeat the process recursively to
determine higher orders

Step 2: Network Rewiring

2.

Construct a conventional first-order network

For every second order rule, add the corresponding node;

Rewire the previous first-order link to connect to the new
higher-order node; then repeat the process for third order rules and
SO on

Once we finish the highest order, rewire all out-edges from that
order to connect to nodes with the highest orders possible.

Algorithm 1 HON+ rule extraction algorithm. Given the
raw sequential data 7. extracts arbitrarily high orders of
dependencies, and output the dependency rules R. Op-
tional parameters include MaxOrder, MinSupport, and
Threshold Multiplier

1: define global C' as nested counter

2: define global D,R as nested dictionary

3: define global SourceToExtSource, StartingPoints as dic-
tionary

4:

5: function EXTRACTRULES(T, [MaxOrder, MinSupport,

ThresholdMultiplier = 1])
6: global MaxOrder, MinSupport, Aggresiveness
e BUILDFIRSTORDEROBSERVATIONS(T")
8: BUILDFIRSTORDERDISTRIBUTIONS(1')
9: GENERATEALLRULES(M axOrder, T')
10:

11: function BUILDFIRSTORDEROBSERVATIONS(T')
12: for ¢ in T do

13: for (Source, Target) in t do

14: ClSource][Target] += 1

15: 1C.add(Source)

16:

17: function BUILDFIRSTORDERDISTRIBUTIONS(T")

18: for Source in C' do

19: for Target in C[Source] do

20: if C[Source][Target] < MinSupport then

21: C[Source][Target] =0

22: for T'arget in C'[Source] do

23: if thenC/[Source|[Target| > 0

24: D|[Source|[Target] =
ClSource|[Target] /(3" C[Source][+])

25:

26: function GENERATEALLRULES(M axOrder, 1)

27: for Source in D do

28: ADDTORULES(Source)

29: EXTENDRULE(Source, Source, 1, T)

30

31; function KLDTHRESHOLD(N cwOrder,ExtSource)

39 return ThresholdMultiplier x NewOrder/loga(1 +
> ClExtSource][#])

33: function EXTENDRULE(V alid, Curr, order, T')

34: if Order < MaxOrder then

35% ADDTORULES(Source)

36: else

37: Distr = D[Valid]

38: i logs (min(Dist vals)) < KLDTHRESH-
oLD(order + 1), Curr then

39: ADDTORULES(V alid)

40: else

41: NewOrder = order + 1

42: Extended = EXTENDSOURCE(Curr)

43: if Fxtended = () then

44: ADDTORULES(V alid)

45: else

46: for ExtSource in Extended do

47: ExtDistr = D[ExtSource]

48: divergence = KLD(EztDistr, Distr)

49: if divergence > KLDTHRESH-
oLD(NewOrder, ExtSource) then

50: EXTEN-
DRULE(FEztSource, ExtSource, NewOrder,T)

5K else
5 XTEN-
. NewOrder,T)

E
DRULE(Valid, ExtSour:

Algorithm 1 (continued)

53: function ADDTORULES(Source):

54: for order in [1.len(Source) + 1] do

: s = Source|0 : order|

56: if not s in D or len(D|s|) == 0 then

57: EXTENDSOURCE(s[1:])

58: for ¢ in C[s] do

59: if C[s][t] > 0 then

60: R[s|[t] = C[s][t]

61:

62: function EXTENDSOURCE(C'urr)

63: if Curr in Sourcel oExtSource then

64: return SourceToExtSource(Curr|

65: else

66: EXTENDOBSERVATION(C'urr)

67: if C'urr in SourceToExtSource then

68: return SourceT oExtsource|Curr|

69: else

70: return ()

7L

72: function EXTENDOBSERVATION(Source)

73: if length(Source) > 1 then

74: if not Source[l :] in ExtC or ExtC[Source] = () then

75: EXTENDOBSERVATION(Source[l :])

76: order = length(Source)

77: define ExtC' as nested counter

78: for T'index, index in StartingPoints|[Source| do

79: if index — 1 < 0 and inder + order <
length(T[Tindex]) then

80: ExtSource = T|[Tindex|[index — 1 : index +
order)

81: ExtC[ExtSource][Target]+ = 1

82: StartingPoints[ExtSource|.add(T'index, index—
1)

83: if ExtC = () then

84: return

8s: for S in ExtC do

86: for ¢ in ExtC|s| do

87: if ExtC|[s|[t] < MinSupport then

88: ExtCls|[t] = 0

89: Cls][t]+ = ExtC[s][t

90: CsSupport =Y ExtC|s][*]

91: for ¢ in ExtC|[s] do

92: if ExtC[s][t] > 0 then

93: Dls|[t] = ExtC|s][t]/CsSupport

94: SourceToExtSource[s[1 :|].add(s)

95:

96: function BUILDSOURCETOEXTSOURCE(order)

97: for sou in D do

98: if len(source) = order then

99: if len(source) > 1 then

100: NewOrder = len(source)

101: for startingin[l..len(source)] do

102: curr = source[starting :|

103: if not curr in Sourcel'oExtSource then

104: SourceToExtSource[curr] = ()

105: if not NewOrder in
SourceT'oExtSource|curr] then

106: SourceToExtSource[curr|[NewOrder] =

107: SourceToExtSource[curr|[NewOrder].add(source)

Scalability :S

Network representation | Number of edges | Number of nodes | Network density * Clustering ** Ranking

(global shipping data) time (mins) time (s)

Conventional first-order 31,028 2,675 4.3x103 4 1.3

Fixed second-order 116,611 19,182 3.2x104 73 7.7

HON, max order two 64,914 17,235 2.2x104 45 4.8

HON, max order three 78,415 26,577 1.1x104 63 6.2

HON, max order four 83,480 30,631 8.9x10° 67 7.0

HON, max order five 85,025 31,854 8.4x10° 68 76

* Using MapEquation with 1000 iterations
** Using PageRank

Source: [2]

Time Complexity

k
LasN %Y ((I+1)R]
i=1

where L is the count of records in the raw data;

N is the number of unique nodes in the raw data;
k is the maximum order of dependency;

R. is the count of dependencies at order i

(*the theoretical upper bound is exponential but is not really helpful for
real data sets, in which orders of dependency tend to follow an inverse
power law)

Data Sets

e Synthetic web clickstreams (11 billion nodes)

e Global shipping data (3,415,577 voyages made by
65,591 ships between May 1st, 2012 and April 30th,
2013)

Related Work

e Going beyond Markov decisions to higher-order
dependencies is not a new idea, but most work has
focused on stochastic processes rather than on the
representation problem.

e VOM (variable-order Markov) models for
predictions are related, but occupy a different
niche.

Further Resources

e [1] Xu, J., Wickramarathne, T., & Chawla, N. (2016). Representing
higher-order dependencies in networks. Science Advances, 2(5),
E1600028.

e [2] http://www.higherordernetwork.com/

e [3] https://github.com/xyjprc/hon

e [4] Xu, |., Saebi, M,, Ribeiro, B., Kaplan, L., & Chawla, N. (2017). Detecting
Anomalies in Sequential Data with Higher-order Networks.

e [5] Cui Jiao, Guo Jun, Zhang Cangsong, & Chang Xiaojun. (2012).
Implementation of random walk algorithm by parallel computing. Fuzzy
Systems and Knowledge Discovery (FSKD), 2012 9th International
Conference on, 2477-2481.

http://www.higherordernetwork.com/
https://github.com/xyjprc/hon

