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A (well-meaning) user tried to run a bioinformatics pipeline to 
analyze a batch of genomic data.

Motivation

2

MAKER



Shared filesystem performance became degraded, with other users 
unable to access the filesystem.

Motivation
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That user got a strongly worded email and had to stop their 
analyses.

Motivation

4

MAKER



Certain program behaviors produce large bursts of metadata I/O 
activity (e.g. library search).

These behaviors can occur at the same time across multiple 
workers (e.g. startup, new analysis phase).

With a large number of nodes, the timing and intensity of metadata 
activity align to overwhelm the shared FS.

Metadata Storm
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Shared filesystems can scale up their metadata capacity.

Panasas, Ceph, etc. use multiple metadata servers to better 
distribute the load.

General purpose solution

Existing Approaches/Related Work
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Applications can use a metadata service layered on top of the 
shared filesystem (e.g. BatchFS, IndexFS).

More efficient metadata management than the native filesystem

Allows for client-side caching and batch updates

Existing Approaches/Related Work
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Software used in analyzing LHC data is distributed through CVMFS

Includes multiple layers of caching and load balancing to handle 
bursts of activity.

https://cernvm.cern.ch/portal/filesystem

Case Study: CVMFS
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CVMFS can be difficult to deploy at some sites.

▰ Requires all workers to have fast internet access
▰ Requires root access on workers to set up FUSE module
▰ Large total size (terabytes), though each worker only uses a 

small part
▰ Each project defines its own filesystem layout for software 

packages/frameworks

Case Study: CVMFS
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For network issues, populate local Squid cache with required data

For root/FUSE limitations, build a static image (Docker, Singularity, 
etc.) containing required pieces

But we don’t actually know what’s required...

Idea: Manually transfer CVMFS data 
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Analysis is data-dependent and non-deterministic, so we need to 
profile a large number (thousands) of analysis runs

Each run makes a large number of filesystem accesses (millions)

We need to use strace-type events to infer filesystem 
organization.

Profiling CVMFS Applications
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18212 1503501245.079960 read(3</lib64/libpthread-2.12.so>, 
"\x7f\x45\x4c\x46\x02\x01\x01\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x03\x00\x3e\x00\x01\x00\x00\x00"..., 832) = 832

Profiling CVMFS Applications
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Simplifying assumptions:

▰ Each analysis run is an independent serial process.
▰ Filesystem accesses follow the Markov property

Turns out to hold in many cases (e.g. sequence of operations for 
loading libraries or $PATH search)

We can easily ignore data access and focus on metadata

Constructing a Graph from Execution Profiles
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In this graph, nodes are filesystem entries (inodes).

Edge weights indicate the number of times the access pattern

inode A -> inode B

occurred over all runs.

Amenable to streaming updates

Constructing a Graph from Execution Profiles
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Groups of filesystem entries frequently accessed together are 
visible as communities in the execution graph.

Hierarchical community detection allows us to identify good 
shards/partitions for manual distribution.

Streaming algorithm exists

Community Detection
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Progressively removes edges from graph

The remaining components are the communities.

Uses edge betweenness: the number of shortest paths between 
pairs of nodes that run along an edge

Sequential algorithm: Girvan–Newman
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Pseudocode of algorithm (courtesy of Wikipedia)

1. For each edge E in G, compute the betweenness of E.
2. Remove the edge with highest betweenness from G.
3. Recalculate betweenness for edges affected by the removal.
4. Repeat Steps 2 and 3 until no edges remain.

Results in a dendrogram showing successively finer clusters

Sequential algorithm: Girvan–Newman
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Computing edge centrality is expensive, must be (partially) 
computed after each edge removal.

Sequential algorithm (Girvan–Newman) runs in O(VE2) or O(V3) in a 
sparse graph.

STINGER supports streaming updates and parallel agglomerative 
clustering.

Improvements

18



https://cernvm.cern.ch/portal/filesystem

https://en.wikipedia.org/wiki/Girvan%E2%80%93Newman_algorith
m

http://www.stingergraph.com/
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