
Streaming Community
Detection for Partitioning
Parallel Filesystems

Tim Shaffer

A (well-meaning) user tried to run a bioinformatics pipeline to
analyze a batch of genomic data.

Motivation

2

MAKER

Shared filesystem performance became degraded, with other users
unable to access the filesystem.

Motivation

3

MAKER

That user got a strongly worded email and had to stop their
analyses.

Motivation

4

MAKER

Certain program behaviors produce large bursts of metadata I/O
activity (e.g. library search).

These behaviors can occur at the same time across multiple
workers (e.g. startup, new analysis phase).

With a large number of nodes, the timing and intensity of metadata
activity align to overwhelm the shared FS.

Metadata Storm

5

Shared filesystems can scale up their metadata capacity.

Panasas, Ceph, etc. use multiple metadata servers to better
distribute the load.

General purpose solution

Existing Approaches/Related Work

6

Applications can use a metadata service layered on top of the
shared filesystem (e.g. BatchFS, IndexFS).

More efficient metadata management than the native filesystem

Allows for client-side caching and batch updates

Existing Approaches/Related Work

7

Software used in analyzing LHC data is distributed through CVMFS

Includes multiple layers of caching and load balancing to handle
bursts of activity.

https://cernvm.cern.ch/portal/filesystem

Case Study: CVMFS

8

https://cernvm.cern.ch/portal/filesystem

CVMFS can be difficult to deploy at some sites.

▰ Requires all workers to have fast internet access
▰ Requires root access on workers to set up FUSE module
▰ Large total size (terabytes), though each worker only uses a

small part
▰ Each project defines its own filesystem layout for software

packages/frameworks

Case Study: CVMFS

9

For network issues, populate local Squid cache with required data

For root/FUSE limitations, build a static image (Docker, Singularity,
etc.) containing required pieces

But we don’t actually know what’s required...

Idea: Manually transfer CVMFS data

10

Analysis is data-dependent and non-deterministic, so we need to
profile a large number (thousands) of analysis runs

Each run makes a large number of filesystem accesses (millions)

We need to use strace-type events to infer filesystem
organization.

Profiling CVMFS Applications

11

18212 1503501245.079960 read(3</lib64/libpthread-2.12.so>,
"\x7f\x45\x4c\x46\x02\x01\x01\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x03\x00\x3e\x00\x01\x00\x00\x00"..., 832) = 832

Profiling CVMFS Applications

12

Simplifying assumptions:

▰ Each analysis run is an independent serial process.
▰ Filesystem accesses follow the Markov property

Turns out to hold in many cases (e.g. sequence of operations for
loading libraries or $PATH search)

We can easily ignore data access and focus on metadata

Constructing a Graph from Execution Profiles

13

In this graph, nodes are filesystem entries (inodes).

Edge weights indicate the number of times the access pattern

inode A -> inode B

occurred over all runs.

Amenable to streaming updates

Constructing a Graph from Execution Profiles

14

Groups of filesystem entries frequently accessed together are
visible as communities in the execution graph.

Hierarchical community detection allows us to identify good
shards/partitions for manual distribution.

Streaming algorithm exists

Community Detection

15

Progressively removes edges from graph

The remaining components are the communities.

Uses edge betweenness: the number of shortest paths between
pairs of nodes that run along an edge

Sequential algorithm: Girvan–Newman

16

Pseudocode of algorithm (courtesy of Wikipedia)

1. For each edge E in G, compute the betweenness of E.
2. Remove the edge with highest betweenness from G.
3. Recalculate betweenness for edges affected by the removal.
4. Repeat Steps 2 and 3 until no edges remain.

Results in a dendrogram showing successively finer clusters

Sequential algorithm: Girvan–Newman

17

Computing edge centrality is expensive, must be (partially)
computed after each edge removal.

Sequential algorithm (Girvan–Newman) runs in O(VE2) or O(V3) in a
sparse graph.

STINGER supports streaming updates and parallel agglomerative
clustering.

Improvements

18

https://cernvm.cern.ch/portal/filesystem

https://en.wikipedia.org/wiki/Girvan%E2%80%93Newman_algorith
m

http://www.stingergraph.com/

M. Girvan and M. E. J. Newman, Community structure in social and
biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826
(2002).

M. E. J. Newman and M. Girvan, Finding and evaluating community
structure in networks. Preprint cond-mat/0308217 (2003).

References

19

https://cernvm.cern.ch/portal/filesystem
https://en.wikipedia.org/wiki/Girvan%E2%80%93Newman_algorithm
https://en.wikipedia.org/wiki/Girvan%E2%80%93Newman_algorithm
http://www.stingergraph.com/

