
Analyzing Neural Networks with
Gradient Tracing

Brian DuSell

Application
Identifying neural network

components that are most

influential in training

Kernel
“Gradient tracing”

● Finds the path in the

computation graph through

which the most gradient

propagates

● Starting from parameters, follow

vertices which contributed most

gradient

Neural Networks in Natural Language Processing
● State of the art in NLP tasks [1]

○ machine translation

○ language modeling

● Trained using backpropagation

algorithm

○ Equivalent to computing partial

derivative of loss w.r.t. parameters

○ Based on the chain rule of calculus

● Consist of a “computation graph”

through which gradient flows

● Notorious for being black boxes

Interpreting Neural Networks
● Ablation study

○ Hack off components

● Design for interpretability

○ Attention [3]

○ Input-switched affine

networks [4]

● Analytical methods

○ Rational recurrences [5]

○ Weighted sum [6]

Image credits:

https://www3.nd.edu/~dchiang/teaching/nlp/2018/notes/chapter4v2.pdf

and [3]

Neural Networks with Multiple Components
● Modern neural network

architectures have multiple

components

● Often used to make training

feasible

● Classic example: LSTMs

The Transformer network, a state-of-the-art machine

translation system [2].

Image credit: https://mchromiak.github.io/articles/2017/Sep/12/Transformer-Attention-is-all-you-need/

Neural Networks with Multiple Components

Architectural diagram of LSTM

Image credit: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

?

?

Neural Network Basics

Input

Target output

Parameters

Predicted output

Loss functionh = W
h
x + b

h
y = W

y
h + b

y
L(y, y ̂)

Computation Graphs
● Like an abstract syntax tree

● Always a DAG

● Vertices represent operators,

constants, or parameters

● Edges are directed and

represent assignments to

function parameters

● Gradient propagates through

graph in reverse from a root

“loss” node

Image credit: [1]

Why Not Centrality Metrics?
● Edge weights, not graph topology, define importance

● CGs are always DAGs, which allows for optimizations

● Gradient does not “flow”

○ Amount of loss propagated depends on the operator

What’s the partial derivative of…

f(x, y) = x + y

f(x, y) = xy

f(x) = 1 / (1 + e

-x

)

Key Idea
● Follow nodes which

contributed gradient with

highest absolute value

● Nodes can be re-used more

than once

● When a node has multiple

gradients flowing back to it, the

gradients are added together

θ

+

×

σx

0.1

0.2

0.25

σ

σ'(0.1) ≈ 0.25

0.1

3

= 10

= 0.01

0.003

3.25

σ'(0.003) ≈ 0.25

0.25

Gradient Tracing Pseudocode
Assume backpropagation has already been run on the computation graph.

Let G = (V, E) be the reversed computation graph, where each edge (u, v) has weight w(u, v) equal to the partial derivative

of the loss function L w.r.t. the parameter θ.

TraceGradient(G, θ):

p := an empty path

v := vθ
while v ≠ v

L

,

append v to p

v := argmax |w(u, v)|

 u

return p

Let a component C be defined as

a subgraph of the computation

graph.

A component C is more

“important” when p contains

more edges in C.

Datasets
● Graphs can be extracted from any neural model run on any dataset

● Typical “small” RNN language model

○ 10k vocab size

○ 1000 hidden units/embedding size

○ ~2.1M parameters

○ ~30M × n edges, where n is sentence length

○ LSTM or NMT system would be bigger

● Should always be small enough to fit into memory

Things I’m Still Thinking About
● How to aggregate results from multiple samples

● How to aggregate results for groups of parameters

● How to aggregate results for groups of vertices (“components”)

● k-best paths

References
[1] Goldberg, Yoav. "Neural network methods for natural

language processing." Synthesis Lectures on Human

Language Technologies 10.1 (2017): 1-309.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and

Illia Polosukhin. Attention is all you need. CoRR,

abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.03762.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. Neural machine translation by jointly learning to

align and translate. CoRR, abs/1409.0473,2014. URL

http://arxiv.org/abs/1409.0473.

[4] Jakob N. Foerster, Justin Gilmer, Jan Chorowski, Jascha

Sohl-Dickstein, and David Sussillo. Intelligible language

modeling with input switched affine networks. CoRR,

abs/1611.09434, 2016. URL http://arxiv.org/abs/1611.09434.

[5] Hao Peng, Roy Schwartz, Sam Thomson, and Noah A.

Smith. Rational Recurrences. URL

https://arxiv.org/abs/1808.09357.

[6] Omer Levy, Kenton Lee, Nicholas FitzGerald, and Luke

Zettlemoyer. Long short-term memory as a dynamically

computed element-wise weighted sum. CoRR,

abs/1805.03716, 2018. URL http://arxiv.org/abs/1805.03716.

