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Application
Identifying neural network 

components that are most 

influential in training

Kernel
“Gradient tracing”

● Finds the path in the 

computation graph through 

which the most gradient 

propagates

● Starting from parameters, follow 

vertices which contributed most 

gradient



Neural Networks in Natural Language Processing
● State of the art in NLP tasks [1]

○ machine translation

○ language modeling

● Trained using backpropagation 

algorithm

○ Equivalent to computing partial 

derivative of loss w.r.t. parameters

○ Based on the chain rule of calculus

● Consist of a “computation graph” 

through which gradient flows

● Notorious for being black boxes



Interpreting Neural Networks
● Ablation study

○ Hack off components

● Design for interpretability

○ Attention [3]

○ Input-switched affine 

networks [4]

● Analytical methods

○ Rational recurrences [5]

○ Weighted sum [6]

Image credits:

https://www3.nd.edu/~dchiang/teaching/nlp/2018/notes/chapter4v2.pdf

and [3]



Neural Networks with Multiple Components
● Modern neural network 

architectures have multiple 

components

● Often used to make training 

feasible

● Classic example: LSTMs

The Transformer network, a state-of-the-art machine 

translation system [2].

Image credit: https://mchromiak.github.io/articles/2017/Sep/12/Transformer-Attention-is-all-you-need/



Neural Networks with Multiple Components

Architectural diagram of LSTM

Image credit: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

?

?



Neural Network Basics

Input

Target output

Parameters

Predicted output

Loss functionh = W
h
x + b

h
y = W

y
h + b

y
L(y, y ̂)



Computation Graphs
● Like an abstract syntax tree

● Always a DAG

● Vertices represent operators, 

constants, or parameters

● Edges are directed and 

represent assignments to 

function parameters

● Gradient propagates through 

graph in reverse from a root 

“loss” node

Image credit: [1]



Why Not Centrality Metrics?
● Edge weights, not graph topology, define importance

● CGs are always DAGs, which allows for optimizations

● Gradient does not “flow”

○ Amount of loss propagated depends on the operator

What’s the partial derivative of…

f(x, y) = x + y

f(x, y) = xy

f(x) = 1 / (1 + e

-x

)



Key Idea
● Follow nodes which 

contributed gradient with 

highest absolute value

● Nodes can be re-used more 

than once

● When a node has multiple 

gradients flowing back to it, the 

gradients are added together
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Gradient Tracing Pseudocode
Assume backpropagation has already been run on the computation graph.

Let G = (V, E) be the reversed computation graph, where each edge (u, v) has weight w(u, v) equal to the partial derivative 

of the loss function L w.r.t. the parameter θ.

TraceGradient(G, θ):

p := an empty path

v := vθ
while v ≠ v

L

,

append v to p

v := argmax |w(u, v)|

                          u

return p

Let a component C be defined as 

a subgraph of the computation 

graph.

A component C is more 

“important” when p contains 

more edges in C.



Datasets
● Graphs can be extracted from any neural model run on any dataset

● Typical “small” RNN language model

○ 10k vocab size

○ 1000 hidden units/embedding size

○ ~2.1M parameters

○ ~30M × n edges, where n is sentence length

○ LSTM or NMT system would be bigger

● Should always be small enough to fit into memory



Things I’m Still Thinking About
● How to aggregate results from multiple samples

● How to aggregate results for groups of parameters

● How to aggregate results for groups of vertices (“components”)

● k-best paths
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