Jaccard Coefficients

The College of Engineering at the University of Notre Dame

What is the Goal of Computing Jaccard?

- Compute the similarity between the neighborhoods of two nodes

The College of Engineering at the University of Notre Dame

Jaccard Use Cases: Community Detection

- Originally introduced the the context of geographical location of botanical species
- Has since been studied extensively for community detection (with many variations)

The College of Engineering at the University of Notre Dame

Jaccard Use Cases: Computing
Similarity Between Wikipedia Pages

- Computes similarity between pages
- Algorithm uses MapReduce (Hadoop)
- Demonstrates that Jaccard is highly parallelizable, and scales well

The College of Engineering at the University of Notre Dame

Jaccard: Potential Graph Benchmark

- Compared to BFS:
- Jaccard focuses computation towards dense neighborhoods
- Jaccard Larger computation O(N3) work (worst case)
- Jaccard can be adapted towards streaming variants

The College of Engineering at the University of Notre Dame

What is a Jaccard Coefficient?

- Similarity between neighborhoods of two nodes (V, U):

$$
\begin{aligned}
& -\Gamma(\mathrm{u}, \mathrm{v})=|N(V) \cup N(U)| \\
& -\gamma(\mathrm{u}, \mathrm{v})=|N(V) \cap N(U)| \\
& -\operatorname{Jaccard}(V, U)=\frac{\Gamma(\mathrm{u}, \mathrm{v})}{\gamma(\mathrm{u}, \mathrm{v})} \\
& -\gamma(\mathrm{A}, \mathrm{C})=1 \\
& -\Gamma(\mathrm{A}, \mathrm{C})=3 \\
& -\operatorname{Jaccard}(\mathrm{A}, \mathrm{C})=1 / 3
\end{aligned}
$$

Metrics for Jaccard

- Standard wall-clock time
- Jaccards per second (JACS)
- Useful for scalability and comparing across machines

Jaccard Naïve Sequential Algorithm

- Comes down to being able to compute intersection of neighborhoods ($\gamma(\mathrm{u}, \mathrm{v})$)

$$
\begin{aligned}
& -\gamma(u, v)=|N(V) \cap N(U)| \\
& -\Gamma(u, v)=|N(V)|+|N(U)|-\gamma(u, v)
\end{aligned}
$$

- Intersection algorithm:
- For each vertex Y in $\mathrm{N}(\mathrm{V})$:
- If Y is in $N(U)$
» IntersectCounter++

Complexity of Computing Jaccard

- To compute Jaccard(U, V)
- If lists of neighbors are sorted:
- $O(M)$ - M is max of outdegree of U or V
- If lists of neighbors have to be sorted first
- O(Mlog(M))
- Otherwise perform repeated searches:
- $\mathrm{O}\left(\mathrm{M}^{2}\right)$

Compute Jaccard With GraphBLAS

- GraphBLAS
- Linear Algebra package to perform graph operations
- Can be used to compute Jaccard efficiently
- Represent graph G as matrix A, compute A*A=C
- Values in C correspond to the intersection size
- Complexity: O(nnz(A))

Simple Example

	A	B	C	D
A	0	1	1	0
B	1	0	1	1
C	1	1	0	0
D	0	1	0	0

	A	B	C	D
A	0	1	1	0
B	1	0	1	1
C	1	1	0	0
D	0	1	0	0

	A	B	C	D
A	2	1	1	1
B	1	3	1	0
C	1	1	2	1
D	1	0	1	1

The College of Engineering at the University of Notre Dame

Jaccard with MapReduce

- 1 MapReduce 'step' has 3 phases:

1. Map some function over the data
2. Group pairs by key
3. Reduce Each group to solve

- Two different implementations exist, they 3 and 5 steps

Next Algorithm

- Adapt idea from Triangle Counting algorithm
- Suri, S. and Vassilvitskii, S., 2011, March. Counting triangles and the curse of the last reducer. In Proceedings of the 20th international conference on World wide web (pp. 607-614). ACM.
- Partition graph into overlapping subsets so that each triangle is in at least one of the subsets
- Use sequential Jaccard algorithm as black box
- Combine results

The College of Engineering at the University of Notre Dame

