Jaccard Coefficients

What is the Goal of Computing Jaccard?

 Compute the similarity between the neighborhoods of two nodes

Jaccard Use Cases: Community Detection

- Originally introduced the the context of geographical location of botanical species
- Has since been studied extensively for community detection (with many variations)

Jaccard Use Cases: Computing Similarity Between Wikipedia Pages

- Computes similarity between pages
- Algorithm uses MapReduce (Hadoop)
- Demonstrates that Jaccard is highly parallelizable, and scales well

Jaccard: Potential Graph Benchmark

- Compared to BFS:
 - Jaccard focuses computation towards dense neighborhoods
 - Jaccard Larger computation O(N³) work (worst case)
 - Jaccard can be adapted towards streaming variants

What is a Jaccard Coefficient?

 Similarity between neighborhoods of two nodes (V, U):

$$-\Gamma(\mathbf{u},\mathbf{v}) = |N(V) \cup N(U)|$$
$$-\gamma(\mathbf{u}, \mathbf{v}) = |N(V) \cap N(U)$$
$$Iaccord(V, U) = \frac{\Gamma(\mathbf{u}, \mathbf{v})}{\Gamma(\mathbf{u}, \mathbf{v})}$$

$$-Jaccard(V,U) = \frac{\Gamma(u,v)}{\gamma(u,v)}$$

$$- \gamma (A, C) = 1$$

$$-\Gamma(A,C)=3$$

- Jaccard(A, C) = 1/3

The College of Engineering at the University of Notre Dame

5

Metrics for Jaccard

- Standard wall-clock time
- Jaccards per second (JACS)
 - Useful for scalability and comparing across machines

Jaccard Naïve Sequential Algorithm

7

 Comes down to being able to compute intersection of neighborhoods (x(u, v))

$$-\mathbf{v}(\mathbf{u}, \mathbf{v}) = |N(V) \cap N(U)|$$

- $-\Gamma(u,v) = |N(V)| + |N(U)| v(u, v)$
- Intersection algorithm:
 - For each vertex Y in N(V):
 - If Y is in N(U)
 - » IntersectCounter++

Complexity of Computing Jaccard

- To compute Jaccard(U, V)
 - If lists of neighbors are sorted:
 - O(M) M is max of outdegree of U or V
 - If lists of neighbors have to be sorted first
 - O(Mlog(M))
 - Otherwise perform repeated searches:
 - O(M²)

Compute Jaccard With GraphBLAS

- GraphBLAS
 - Linear Algebra package to perform graph operations
 - Can be used to compute Jaccard efficiently
 - Represent graph G as matrix A, compute A*A=C

9

- Values in C correspond to the intersection size
- Complexity: O(nnz(A))

Simple Example

	Α	В	С	D
А	0	1	1	0
В	1	0	1	1
С	1	1	0	0
D	0	1	0	0

	Α	В	С	D
А	0	1	1	0
В	1	0	1	1
С	1	1	0	0
D	0	1	0	0

	Α	B	С	D
А	2	1	1	1
В	1	3	1	0
С	1	1	2	1
D	1	0	1	1

10

Jaccard with MapReduce

- 1 MapReduce 'step' has 3 phases:
 - **1. Map** some function over the data
 - 2. Group pairs by key
 - 3. Reduce Each group to solve
- Two different implementations exist, they 3 and 5 steps

11

Next Algorithm

- Adapt idea from Triangle Counting algorithm
 - Suri, S. and Vassilvitskii, S., 2011, March. Counting triangles and the curse of the last reducer. In *Proceedings of the 20th international conference on World wide web* (pp. 607-614). ACM.
 - Partition graph into overlapping subsets so that each triangle is in at least one of the subsets
 - Use sequential Jaccard algorithm as black box

12

– Combine results