
Chapter 1

Apache Giraph

Contributed by Neil Butcher

1.1 Introduction

Giraph is a project developed by Apache to utilize their Hadoop MapReduce software to perform
graph processing on large graphs. [4] Giraph is currently being used by Facebook to maintain users
and their connections. Facebook has reported being able to process 1 trillion edges in 4 minutes,
while using 200 machines [2]. Giraph is an adapted and adjusted version of Googles graph processing
system, Pregel. [5] Giraph, unlike Pregel is open source and is build off of Hadoop and so it can be
easily installed into Hadoop clusters. Giraph programs are written from the perspective of a single
vertex and can only pass messages to other vertices, because of this the model of programming is
referred to as ’think-like-a-vertex’. Giraph is a framework to process graphs with specific goals in
mind. [7]

The main goal of Giraph is to produce a robust graph processing software that scales from a
single hardware node to thousands of nodes. In order to do this properly Giraph adapts what is
commonly referred to as a Bulk synchronous parallel (BSP) model. [3] This concept characterizes
program execution as a series of supersteps, supersteps occur sequentially. Each superstep can be
defined in three steps: concurrent computation, communication, barrier synchronization. Concur-
rent computation allows each processor to perform some local operations, however there can be no
communication required to complete the computation in this superstep. Next is communication,
any information that is required by other threads in the next superstep is transmitted here. Finally
there is barrier synchronization, this happens after all of the communication and computation has
been completed by the threads, at this point the messages are transferred between threads and the
next superstep begins. Using this BSP model often results in applications that scale efficiently [3].
Often graph problems consist of enormous data sets that can not even fit on a single node or even
a cluster of nodes. Giraph fixs this problem by minimizing the memory needed for a each node to
perform the computation. This makes reducing the amount of storage used by each node essential
to scaling up to large problems [4].

An important goal of Giraph is to ensure even on large clusters that there will be no single point
of failure. In other words, if any node breaks and can not complete its task, the system will be able
to restore and redistribute that nodes work to complete properly. This problem is solved through
a technique often referred to as checkpointing. Checkpointing is essentially saving the state of the
computation at some point onto multiple disks that the program can revert back to in the case of
a failure. This will clearly solve the problem but also can be incredibly time consuming to store

1



Apache Giraph

all of that information onto disk. The larger the system the more likely the usage of checkpointing
will become required as there is more likely to be a failure.

There is also a goal of Giraph in which it greatly simplifies writing graph programs that can take
advantages of the Hadoop MapReduce framework. It is common for developers to want to develop
codes for MapReduce because it provides the advantages stated earlier, however often representing
graphs in Hadoop is both difficult and inefficient. This has raised heavy demand for a graph based
version of Hadoop and thus Giraph was made. [4]

1.2 Computations in Giraph

Giraph closely follows the BSP model discussed in the introduction section. [4] [3] This means
computation occurs as a series of asynchronous supersteps. Giraph forces the programmer to write
computations from the perspective of a vertex. Each vertex is only aware of their own neighbors (as
opposed to being aware of the entire graph), this reduces the amount of information to be stored
on each processor. For each vertex a user defined ’compute’ portion is executed, each vertex can
send any number of messages to neighboring vertices throughout computation. The messages sent
however will not be received until the following superstep begins, this keeps the compute stages
independent within a superstep. The next superstep can only being if all the computation in the
previous superstep has been completed. [3]

From a user perspective graphs are magically distributed by the inner workings of Giraph and
how a input graph can be read can be defined in a user function, [1] or there are default functions
that can read standard graph input formats. This is a complex system that is built upon the
Hadoop framework but takes ideas to improve performance from Pregel [5]. This makes expressing
graphs simple and adaptable to different problems. Giraph can be easily configured to work on
different types of graphs, Graphs can also be expressed with edge weights and allows multiple
types of weights. This adaptability of the graph model is often desirable when working on real
applications. Often real applications will not perfectly fit into the typical graph model so having
an adaptable graph format is desirable.

Giraph is written entirely in Java, the high level language gives adaptability and consistency
to the language. There is a user defined ’start’ function this function has the goal of ’starting’ the
program its much like a ’main’ function in a typical program. Compute is a user defined function
that is the most essential component of any Giraph program. The compute function happens on
every vertex in each superstep. It takes as parameter a list of messages, these messages were sent in
the previous superstep to the vertex. There are two key functions in Giraph that are needed in order
to properly write a compute function: voteToHalt and sendMessage. The function sendMessage
takes as a parameter the message and the vertex number of the vertex the message to be delivered
to. The purpose of sendMessage is to allow vertices to communicate between supersteps. The
function ’voteToHalt’ takes no parameters and exists as a mechanism for a vertex to signal that it
has finished computing. Given these components almost any graph problem can be solved using
Giraph. There are more complex functions that exist for performance reasons.

A simple algorithm for Single Source Shortest Path (SSSP) can be seen in figure 1.1. The code
is taken from [1]. An illustration of the execution of this code can be found in 1.2 [1]. The definition
of SSSP is given a graph with weighted edges and a source vertex, find the shortest path from the
start vertex to all vertices in the graph. We assume there exists a start function that sends a ’0’
to the first vertex. This makes sense, because the shortest path from the start node to the start
node is of course zero. The pseudo code of the compute function starts by checking if a message
has been received, if one has not, then halt and wait for the next superstep. If messages have been

Version 1.0 Page 2



Apache Giraph

received, find the smallest value in all of the messages. Finally, go through all neighbors, send them
a message that is the vertex shortest distance plus the distance to that neighbor. Now referring
back to the figure 1.2 shows a typical execution of this code. The start node starts by setting its
shortest path length to 0 and sending a message to its neighbor with the distance one since that
is the edge weight. In the next superstep, the second node now has received the message from
the first, and checks its neighbors and sends the edge weights plus one (since that vertex is one
away from source). This is an example of a simple yet clever algorithm that only requires vertices
computing independently and then passing messages. [1]

1.3 Conclusion

Apache Giraph is a robust highly scalable graph algorithm framework that uses the think like a
vertex model of programming. Giraph is based off the Bulk Synchronous Parallel model [3] that
ensures simple execution and efficient scaling to large numbers of processors. They also designed
Giraph to stand through single point of failures through checkpointing. The programming of the
language is done in Java which results in verbose but concise code. The base API of Giraph is simple
and built off of a few elementary functions. This simplicity makes developing codes straightforward
if the developer has a effecitive ’think-like-a-vertex’ algorithm. Giraph can be adapted easily to
a wide variety of graph based problems and I have shown a simple SSSP algorithm as well as
explained the flow of program execution while it runs. There also exist algorithms for a variety of
different kernels that use the ’think-like-a-vertex’ model of programming i.e. Page Rank [5] Regular
Path Queries [6] Neural Modeling [8]. Giraph is widely used and scalable framework that can be
used to compute on large datasets.

Version 1.0 Page 3



Apache Giraph

Figure 1.1: Example Giraph Code to compute Single Source Shortest Path

Version 1.0 Page 4



Apache Giraph

Figure 1.2: Example figure to compute Single Source Shortest Path

Version 1.0 Page 5



Bibliography

[1] Introduction to apache giraph. http://giraph.apache.org/intro.html. Accessed: 2018-11-20.

[2] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi Muthukr-
ishnan. One trillion edges: Graph processing at facebook-scale. Proceedings of the VLDB
Endowment, 8(12):1804–1815, 2015.

[3] Alexandros V Gerbessiotis and Leslie G Valiant. Direct bulk-synchronous parallel algorithms.
Journal of parallel and distributed computing, 22(2):251–267, 1994.

[4] Minyang Han and Khuzaima Daudjee. Giraph unchained: barrierless asynchronous parallel exe-
cution in pregel-like graph processing systems. Proceedings of the VLDB Endowment, 8(9):950–
961, 2015.

[5] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn, Naty Leiser,
and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. In Proceedings
of the 2010 ACM SIGMOD International Conference on Management of data, pages 135–146.
ACM, 2010.

[6] Maurizio Nolé and Carlo Sartiani. Processing regular path queries on giraph. In EDBT/ICDT
Workshops, volume 14, page 3, 2014.

[7] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and John
McPherson. From think like a vertex to think like a graph. Proceedings of the VLDB En-
dowment, 7(3):193–204, 2013.

[8] Shuo Yang, Nicholas D Spielman, Jadin C Jackson, and Brad S Rubin. Large-scale neural
modeling in mapreduce and giraph. In Electro/Information Technology (EIT), 2014 IEEE
International Conference on, pages 556–561. IEEE, 2014.

6


