
Chapter 1

Apache Jena

Contributed by Tong Zhao

1.1 Background

Apache Jena [3] is a free and open source Java specifically for building Semantic Web and Linked
Data applications. Apache Jena provides an Java API that supports reading, writing and manip-
ulating Resource Description Framework (RDF) graphs, where RDF is a set of World Wide Web
Consortium (W3C) specifications [1] designed as a metadata data model.

Jena was created by HP Labs1 in the year of 2000. In 2009, HP decided to stop direct support
of development of Jena, so the project team applied to have Jena adopted by the Apache Software
Foundation in November 2010 and the vote result is still publicly available2.

1.2 Expressing Graphs

In Jena, an RDF graph is represented by a data structure called Model. A Model contains a
collection of RDF resources (vertices), attached to each other by labelled relations (edges). Each
relationship goes only in one direction, so all RDF graphs are directed and hence Jena does not
support undirected graphs. Each resource can have any number of VCARD, which are the properties
of that resource. The vCard Ontology [2] is predefined and contains a large number of property
types.

1.3 Syntax

Since Jena is a Java API, the syntax of Jena is just like any Java programs. Below is a small piece
of code from Jena official documentations, the detailed meanings of the methods will be talked in
the next section.

// list the statements in the Model

StmtIterator iter = model.listStatements();

// print out the predicate, subject and object of each statement

1http://www8.hp.com/us/en/hp-labs/index.html
2http://mail-archives.apache.org/mod mbox/incubator-general/201011.mbox/<4CEC31E4.9080401@apache.org>

1

JENA

while (iter.hasNext()) {

Statement stmt = iter.nextStatement(); // get next statement

Resource subject = stmt.getSubject(); // get the subject

Property predicate = stmt.getPredicate(); // get the predicate

RDFNode object = stmt.getObject(); // get the object

System.out.print(subject.toString());

System.out.print(" " + predicate.toString() + " ");

if (object instanceof Resource) {

System.out.print(object.toString());

} else {

// object is a literal

System.out.print(" \"" + object.toString() + "\"");

}

System.out.println(" .");

}

1.4 Key Graph Primitives

• Model is the class that represents a graph in Jena API. To create a model, one can use a
predefined model type in ModelFactory as:
Model model = ModelFactory.createDefaultModel();

• Resource is the class that represents a vertec in Jena API. Each resource usually have a URI
as its unique id, so a resouce can be created as:
static String personURI = "http://somewhere/JohnSmith";

Resource johnSmith = model.createResource(personURI);

• .addProperty() is the method that can be used to add a property or a statement (edge) to
a resourse. Taking the above resource johnSmith as an example, to add a property to it:
static String fullName = "John Smith";

johnSmith.addProperty(VCARD.FN, fullName);

To make a statement between johnSmith with a new resource davidSmith:
Resource davidSmith = model.createResource("http://somewhere/davidSmith");

johnSmith.addProperty(hasSon, davidSmith);

• .listStatements() is the method to get a iterator which contains all the statements within
the model. The example in Section 1.3 is using it to print out all the statements within a
given model.

• SimpleSelector is a class that can be used to make basic queries on the model. Following
is a basic example of it:

// select all the resources with a VCARD.FN property

// whose value ends with "Smith"

StmtIterator iter = model.listStatements(

new SimpleSelector(null, VCARD.FN, (RDFNode) null) {

public boolean selects(Statement s)

{return s.getString().endsWith("Smith");}

Version 1.0 Page 2

JENA

});

• JenaARQTest, QueryFactory and QueryExecutionFactory are the classes that can be to-
gether used to execute any SPARQL queries on RDF graphs within the Java API, where
SPARQL is a query language that was specifically designed for RDF databases.

1.5 Execution Model

I did not find any description of Jena’s execution model.

1.6 Examples

Below is a basic BFS implementation3 by Jena API in Java.

import java.io.IOException;

import java.io.InputStream;

import java.util.ArrayList;

import java.util.LinkedList;

import java.util.List;

import java.util.Queue;

import com.hp.hpl.jena.rdf.model.Model;

import com.hp.hpl.jena.rdf.model.ModelFactory;

import com.hp.hpl.jena.rdf.model.Resource;

import com.hp.hpl.jena.rdf.model.StmtIterator;

import com.hp.hpl.jena.vocabulary.OWL;

import com.hp.hpl.jena.vocabulary.RDFS;

public class BFSInRDFWithJena {

public static List<List<Resource>> BFS(final Model model,

final Queue<List<Resource>> queue, final int depth) {

final List<List<Resource>> results = new ArrayList<>();

while (!queue.isEmpty()) {

final List<Resource> path = queue.poll();

results.add(path);

if (path.size() < depth) {

final Resource last = path.get(path.size() - 1);

final StmtIterator stmt = model.listStatements(null,

RDFS.subClassOf, last);

while (stmt.hasNext()) {

final List<Resource> extPath = new ArrayList<>(path);

extPath.add(stmt.next().getSubject().asResource());

queue.offer(extPath);

}

}

}

3https://stackoverflow.com/questions/17750421/retrieving-all-paths-in-an-owl-class-hierarchy-with-sparql-and-
jena

Version 1.0 Page 3

JENA

return results;

}

public static void main(final String[] args) throws IOException {

final Model model = ModelFactory.createDefaultModel();

try (final InputStream in = BFSInRDFWithJena.class.getClassLoader().

getResourceAsStream("camera.owl")) {

model.read(in, null);

}

// setup the initial queue

final Queue<List<Resource>> queue = new LinkedList<>();

final List<Resource> thingPath = new ArrayList<>();

thingPath.add(OWL.Thing);

queue.offer(thingPath);

// Get the paths, and display them

final List<List<Resource>> paths = BFS(model, queue, 4);

for (List<Resource> path : paths) {

System.out.println(path);

}

}

}

1.7 Conclusion

Jena API is not like other graph paradigms like NetworkX4 or SNAP5, which are designed for graph
algorithms. Jena was developed very specifically for building Semantic Web and Linked Data
applications. In such applications, data are usually saved in RDF formatted databases and the
resources usually have URI or URL. Jena can then take the advantage of working with or even
querying RDF graphs within Java.

4https://networkx.github.io/
5http://snap.stanford.edu/index.html

Version 1.0 Page 4

Bibliography

[1] Steve Bratt. Semantic web and other w3c technologies to watch. Talks at W3C, January, 2007.

[2] Renato Iannella and James McKinney. vcard ontology-for describing people and organizations.
W3C Group Note NOTE-vcard-rdf-20140522, 2014.

[3] Apache Jena. Apache jena. jena. apache. org [Online]. Available: http://jena. apache. org
[Accessed: Mar. 20, 2014], page 14, 2013.

5

