
Chapter 1

NetworkX Graph Library

Contributed by Satyaki Sikdar

1.1 Background

NetworkX is an open-source Python library designed to handle and explore graphs [1]. The project
started in 2005 at the Los Alamos National Laboratory by Aric Hagberg and Pieter J. Swart. It
is still in active development with frequent releases. It is available for download from their official
website www.networkx.github.io.

The philosophy behind the design of NetworkX was to create a tool which is user-friendly,
therefore making it accessible to a large community of researchers in complex networks which
included physicists, social scientists, mathematicians, and computer scientists. However, it does
suffer from scalability problems, both regarding computation time and memory, when it comes to
handling large million node graphs for example. However, it can handle small to medium scale
graphs with ease and has a vibrant library of built-in graph algorithms and generators.

1.2 Expressing Graphs

Out of the box, NetworkX supports 4 primary graph containers—Graph, DiGraph, MultiGraph

and MutiDiGraph representing undirected, directed, multi, and multi-directed graphs respectively.
The graphs are represented using nested Python dictionary objects. This allows users to add an
arbitrary number of node and attributes which becomes very useful while handling heterogeneous
networks. Self-loops are not allowed only in the Graph class.

Any hashable object can act as a node in the graphs. Thus it does not require the graphs
to have continuous numeric node labels like the usual C/C++ based graph libraries do. Edges
can be created between non-existing nodes in the graph, which then get created. It supports a
lot of different file formats for reading and writing graphs including the conventional edge lists,
adjacency lists, GEXF, GML, JSON, Pajek, GraphML among others1. This makes NetworkX very
useful since there exist different graph representation formats, with each having their pros and
cons.

1find the full list here https://networkx.github.io/documentation/stable/reference/readwrite/index.html

1



NetworkX

1.3 Syntax

Since NetworkX is an external library, one must import it to the current namespace before using
it by using the command ‘import networkx as nx’ (nx is a popular nickname of the library).
Table 1.1 lists some of the common NetworkX library methods.

1.4 Key Graph Primitives

Discuss here what are the key graph primitives supported by the paradigm.

1.5 Execution Model

As mentioned before, graphs are stored as nested dictionary objects. Since the whole source code is
in pure Python, it relies heavily on Python functions and data structures. For example, the graph
primitives are defined as regular Python classes. It does, however, use functions from the Numpy
and SciPy libraries to perform specific tasks like eigen-decompositions and other linear algebra
operations. So, by design, NetworkX follows a serial computation model. This allows the API to
be simple and user-friendly while sacrificing performance for large graphs.

1.6 Examples

The following code shows the implementation of the Breadth-First Search routine on a NetworkX
graph: G, which is a Barabasi-Albert graph with 100 nodes. This is one of many built-in graph
generators; see the full list here2.

NetworkX code for a Breadth First Search routine

import networkx as nx

from collections import deque

def BFS(G, s):

"""

Runs BFS from source node ‘s’.

Returns the shortest path dictionary ‘d’

"""

d = {} # stores the shortest distance from source ‘s’

d[s] = 0

Q = deque() # creates a new Queue object

Q.append(s) # adds the source ‘s’ to the queue

while len(Q) != 0:

u = Q.popleft() # dequeue from queue

for v in G.neighbors(u): # iterate thru the neighbors of ’u’

if v not in d: # ‘v’ is unvisited

d[v] = d[u] + 1 # update shortest path distance of ‘v’

Q.append(v) # add ‘v’ to the queue

return d

2https://networkx.github.io/documentation/stable/reference/generators.html

Version 1.0 Page 2



NetworkX

G = nx.barabasi_albert_graph(100, 3) # creates a BA graph with n=100, m0=3

d = BFS(G, 0) # run BFS from node 0

print(d) # prints the dictionary

Developers of the graph-tool graph library have benchmarked the performance of NetworkX and
other graph libraries in Python by comparing the running times of graph algorithms like PageRank,
single source shortest path, K-core decomposition, etc3. NetworkX is the only library that is written
in pure Python, so it is considerably slower than the rest.

1.7 Conclusion

NetworkX provides a flexibly and easy to use framework for handing small to medium scale graphs.
The API is mature and has an extensive list of in-built graph algorithms and generators.

3more details here https://graph-tool.skewed.de/performance

Version 1.0 Page 3



NetworkX

Table 1.1: Some common NetworkX function calls

Description

Graph containers

G = nx.Graph() G is an empty undirected graph
G = nx.DiGraph() G is an empty directed graph
G = nx.MultiGraph() G is an empty undirected multi-graph
G = nx.MultiDiGraph() G is an empty directed multi-graph

Nodes

G.add node(‘a’) adds a new node with id a

G.add nodes from(iterable adds nodes from the iterable to the graph
G.add nodes from(H) adds nodes from another NetworkX graph H
G.nodes() returns an iterable view of the nodes in the

graph
G.remove node(id) removes an existing node a and all its edges

from the graph
G.remove nodes from(iterable) removes existing nodes with the ids taken

from the iterable
G.has node(id) checks if the node with id exists in the graph

Edges

G.add edge(u, v) adds the edge (a, b) to the graph. Replaces
existing edge if it already exists.

G.add edges from(iterable) adds edges from the iterable with items of the
form (u, v) or (u, v, w)

G.add edges from(H) adds edges from another NetworkX graph H
G.edges() Returns an iterable view of the edges in the

graph
G.remove edge(u, v) removes an existing edge (u, v) from the

graph
G.remove nodes from(iterable) removes existing edges from the iterable
G.has edge(u, v) checks if the edge (u, v) exists in the graph

Neighbors

G.neighbors(u) returns an iterable view of the neighboring
nodes of u

G.predecessors(u) returns an iterable view of the predecessor
nodes of u in a directed graph

G.successors(u) returns an iterable view of the successors
nodes of u in a directed graph

Graph Properties

G.order() returns the number of nodes in the graph
G.size() returns the number of edges in the graph
nx.diameter(G) returns the diameter of the graph

Version 1.0 Page 4



Bibliography

[1] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and
function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM
(United States), 2008.

5


