
Chapter 1

GraphX and Spark

Contributed by Mark Horeni

1.1 Background

GraphX along with Apache Spark were made from University of California Berkely [4]. The purpose
of Spark was to have the function of map reduce, but still have everything in memory so that
operations can run faster [4]. GraphX is a library that was written on top Spark using Java and
Scala to take advantage of this in memory form of map reduce with specifically graphs in mind [2].

1.2 Expressing Graphs

The main datatype in GraphX and Spark is the Resilient Distributed Database (RDD). This data
type is a read only collection of information. Since an RDD is read only, there is no way to transform
the graph once it has been created, only by creating an entirely new RDD can changes in a graph
occur. Although this is true, RDD’s have their advantages as they are usually faster because of
their ability to run backup copies of nodes, and can be programmed with locality in mind. RDD’s
are also very fault tolerant, and when faults do occur, reconstruction of data can be parallelized
so performance impact is minimal [3]. The general abstraction in GraphX is a Property Graph, a
directed graph with edge metadata stored inside the graph. Edges and nodes are saved in their
own respective tables along with their metadata. An example of this can be shown in Figure 1.1.

Figure 1.1: Example of a Property Graph [1]
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1.3 Syntax

The main language used by GraphX and Spark is Scala, though Java can be used in place of Scala.
Since a graph is just another datatype that consists of edges and verticies expressed as an RDD, it
can be coded like an RDD [4][2][3]. An example of the code in Figure 1.1 is expressed in Scala is
given bellow [1]

// Assume the SparkContext has already been constructed

val sc: SparkContext

// Create an RDD for the vertices

val users: RDD[(VertexId, (String, String))] =

sc.parallelize(Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")),

(5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))

// Create an RDD for edges

val relationships: RDD[Edge[String]] =

sc.parallelize(Array(Edge(3L, 7L, "collab"), Edge(5L, 3L, "advisor"),

Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi")))

// Define a default user in case there are relationship with missing user

val defaultUser = ("John Doe", "Missing")

// Build the initial Graph

val graph = Graph(users, relationships, defaultUser)

1.4 Key Graph Primitives

By default, GraphX has PageRank, connected components, k-core, triangle counting, LDA, SVD++,
and a few other primitives [2]. Some of the graph primitives such as PageRank, connected compo-
nents, and K-core are written over the GAS Pregel API, but are possible to be written in native
Spark [2]. Any message passing based graph primitive can be easily written in as a function, and
as an example, the code for connected components can be seen bellow [2]

def ConnectedComp(g: Graph[V, E]) = {

g = g.mapV(v => v.id) // Initialize vertices

def vProg(v: Id, m: Id): Id = {

if (v == m) voteToHalt(v)

return min(v, m)

}

def sendMsg(t: Triplet): Id =

if (t.src.cc < t.dst.cc) t.src.cc

else None // No message required

def gatherMsg(a: Id, b: Id): Id = min(a, b)

return Pregel(g, vProg, sendMsg, gatherMsg)

}

1.5 Execution Model

The basis of the GraphX is the underlying engine of Spark. The general execution model of spark
can be seen in Figure 1.3. The spark context is an object in a driver program that controls the
cluster manager, and the cluster manager manages individual worker nodes who do map reduce
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Figure 1.2: A view of the execution model of Spark [1]

Figure 1.3: An diagram of vertex cutting vs edge cutting [1]

tasks, and the work nodes then return the results of those tasks back to the driver program [4].
This is done completely in memory ensure fast execution times [4].

Inside GraphX, to achieve parallelization, the library uses a technique called edge cutting as
illustrated in Figure 1.3. This is done either at randomm (by default) or using a user defined cutting
heuristic [2]. This allows for operations to be done on subgraphs, and messages passed through a
routing table [2]. An example of this can be seen in Figure 1.4.

Figure 1.4: A diagram of vertex routing [1]
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Figure 1.5: Runtimes of various primitives

1.6 Examples

As mentioned before, because GraphX runs completely in memory, fast computation times are
achieved [2]. An example of runtimes of various primitives compared to other paradigms can be
seen in Figure 1.5. For a primitive that is already in GraphX, running it is as simple as defining it
as a map function the RDD as shown below.

import org.apache.spark.graphx.{GraphLoader, PartitionStrategy}

// Load the edges in canonical order and partition the graph for triangle count

val graph = GraphLoader.edgeListFile(sc, "data/graphx/followers.txt", true)

.partitionBy(PartitionStrategy.RandomVertexCut)

// Find the triangle count for each vertex

val triCounts = graph.triangleCount().vertices

// Join the triangle counts with the usernames

val users = sc.textFile("data/graphx/users.txt").map { line =>

val fields = line.split(",")

(fields(0).toLong, fields(1))

}

val triCountByUsername = users.join(triCounts).map { case (id, (username, tc)) =>

(username, tc)

}

// Print the result

println(triCountByUsername.collect().mkString("\n"))

1.7 Conclusion

GraphX and Spark are a simple in memory way of using map reduce on a graph to achieve faster
computation time than other graph paradigms.
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