
Chapter 1

Gremlin Graph Traversal Language

Contributed by Nathaniel Kremer-Herman

1.1 Background

Gremlin is a distributed graph traversal language. It is used to traverse large graphs which are
distributed across different nodes in a cluster, cloud, or grid. Gremlin interoperates with many
different distributed graph representations, meaning it can be used to query large graphs on different
distributed architectures.

Gremlin is a project by the Apache Software Foundation as part of its Apache Tinkerpop graph
computing framework [7]. The Tinkerpop graph computing framework was started to address
computational needs for property graphs. A property graph is a way to define a graph such that
each vertex and each edge may have an arbitrary number of key-value pairs called properties
associated with it. Tinkerpop, and by extension Gremlin, is open-source and vender-agnostic. It is
designed as a general-purpose property graph computing framework of which Gremlin is its graph
traversal and querying tool. The Gremlin console, Gremlin server, and Tinkerpop project source
code are all available at [7].

1.2 Expressing Graphs

Since Gremlin is not a language used to express graphs, it supports many types of graph represen-
tations which it can in turn traverse. It supports two categories of traversals: online transactional
processes (OLTP) and online analytics processes (OLAP) [9]. OLTP is characterized by real-time
database querying of data, and the graph is represented by relationships between different elements
in the database. OLAP represents batch processing systems. Each of these batch processing sys-
tems has its own method of expressing graphs which Gremlin supports for its traversals. Gremlin
supports many popular OLTP graph databases such as OrientDB [8], Titan [1], and Blazegraph
[2]. Gremlin also supports many OLAP graph processors like Hadoop [5], Giraph [4], and Spark
[6]. More supported OLTP and OLAP systems can be found in the Gremlin documentation [9].

1.3 Syntax

Gremlin queries are constructed using a functional, data-flow syntax. These queries are then
executed in the special-purpose Gremlin Console [7]. A Gremlin query conditionally traverses a

1



Gremlin

graph by examining the properties of vertices and edges as discussed in Section 1.1. As an example,
retrieving a list of people which Jane Doe knows is done with the following Gremlin query:

g.V().has("name","Jane Doe").out("knows").values("name")

In this query, g represents the graph, and v refers to the current vertex (as Gremlin traverses
the graph as explained in Section 1.5). The has function matches a property key to a propert value
(in this case the key is name and the value is Jane Doe). The out function takes in a property key
(i.e. knows) and only traverses outbound edges which have a property with that key. Finally, the
values function produces a list of values referring the the given key (i.e. name).

As a more complex example, we can see how a Gremlin query can be used to find the top ten
ranked people in a social network by PageRank:

g.V().hasLabel("person").pageRank().by("friendRank").by(outE("knows")).

order().by("friendRank",desc).limit(10)

The syntax makes it easy to comprehend what the query will return since each function calls
builds off the previous much like Scala or JavaScript callbacks. Working backward, the query
returns the first ten items of a descending order list by friend rank which is produced by the
outbound edge property key knows on a PageRank calculation of the friend rank of every vertex
which has the label person. Gremlin queries entered into the Gremlin Console can be arbitrarily
complex, but these two examples demonstrate the expressiveness of the syntax. In addition to this
syntax, Gremlin has bindings in other programming languages allowing for Gremlin queries to be
defined in-line in scripts. Languages supported include Ruby, Python, Groovy, JavaScript, and
PHP [9].

1.4 Key Graph Primitives

Discuss here what are the key graph primitives supported by the paradigm.
Since Gremlin defines queries and traversals of a graph and not the graph representation itself,

it does not make use of graph primitives per se. Rather, it makes assumptions about the primitives
the OLTP and OLAP systems support since the goal of Gremlin (and the Apache Tinkerpop
project as a whole) is to be a vendor-agnostic graph computing framework. There are really only
two primitives Gremlin assumes exist. Those are vertices and edges. On each vertex and edge,
there can be arbitrarily many key-value pair properties as discussed in Section 1.1. There must be
at least one property on every edge and vertex. This means Gremlin traverses and queries property
graphs exclusively.

Because of the way property graphs are represented, there may be arbitrarily many edges
between two vertices. Taking inspiration from the examples in Section 1.3, two vertices A and B
may have an edge connecting them with the property knows as well as an edge between them with
the property friend. The edges are assumed to be directional, so each vertex would need to have
its own knows and friend edges pointing to the other. It is also possible, since an edge can have
multiple properties, that both knows and friend could be stored on a single edge. Gremlin allows
for this to occur, but some of the systems it supports may not have that functionality.

1.5 Execution Model

There are many layers to the execution of a Gremlin query. At the most fundamental layer, the
user interacts with a special-purpose console called the Gremlin Console. Through this console, a
user writes their Gremlin queries as described in Section 1.3. The Gremlin Console then sends the
query to a Gremlin Server for processing. The Gremlin Server is a front-end for a cluster, cloud, or

Version 1.0 Page 2



Gremlin

grid of distributed machines which each process the query across the vertices of the graph stored
at that machine.

On each machine is a Gremlin Traversal Machine (GTM). The GTM is a special-purpose Java
Virtual Machine (JVM). Following the write once, run anywhere philosophy of the Java program-
ming language, each GTM instantiates and is able to parse an incoming Gremlin query without
any added configuration by an end-user. The GTM is aware of what set of vertices and edges (both
inbound and outbound) are stored at its compute node.

When a Gremlin query is submitted from the Gremlin Console to a Gremlin Server, a process
called the Gremlin Traverser is instantiated. The Gremlin Traverser is the process in charge of
executing the query on a cluster, cloud, or grid. It starts at some arbitrary vertex of the graph
which will be located on a known, single machine. The Gremlin Traverser then performs the
query as far as it can on the current machine. When a transition from one vertex to another on
a different machine is required, the state of the Gremlin Traverser is transferred to the GTM on
the next machine over the network. Figure 1.1 describes in detail the architecture of executing a
Gremlin query.

Cluster

X.Y.Z

User Machine

X.Y.Z

GTM

X.Y.Z

X.Y.Z

GTM GTM

GTM

X.Y.Z

GTM

X.Y.Z

GTM

Two Machines in Cluster

X.Y.Z

Gremlin 
Traverser 
Transfer

Figure 1.1: Gremlin Execution Architecture.

A graph query x.y.z is defined at the user machine via the Gremlin Console which is submitted
to a cluster by a Gremlin Server (not shown). In the cluster, each machine runs a Gremlin Traversal
Machine and obtains a copy of the query from the Gremlin Server. Each machine also has a portion
of the entire graph stored (either in memory or on disk) as a set of vertices and associated edges.
When executing a query, a Gremlin Traverser process enters a GTM, performs its traversal on
relevant vertices, then determines via edge properties which machine it must reach to continue its
traversal. A small example showing two machines in this cluster is shown.

Version 1.0 Page 3



Gremlin

1.6 Examples

At the time of this report, Gremlin has not been referenced in peer-reviewed work demonstrating
its performance or its use in any specific application. Neither the Gremlin website nor the Apache
Tinkerpop website provide performance reports or example applications besides the syntax exam-
ples provided in their documentation. For the sake of completeness, we provide an example query
for a somewhat realistic though small-scale use case. In this example, we want to find which song
writers wrote songs that were sung by Jerry Garcia and performed by the Grateful Dead more than
300 times [3].

g.V().match(as("song").out("sungBy").as("artist"),

as("song").out("writtenBy").as("writer"),as("artist").

has("name","Garcia"),where(as("song").values("performances").

is(gt(300)))).select("song","writer").by("name")

The Gremlin Console produces the following output when executing this query:
gremlin> :> @query

==>[songName:BERTHA, writerName:Hunter]

==>[songName:TENNESSEE JED, writerName:Hunter]

==>[songName:BROWN EYED WOMEN, writerName:Hunter]

==>[songName:CHINA CAT SUNFLOWER, writerName:Hunter]

==>[songName:CASEY JONES, writerName:Hunter]

==>[songName:BLACK PETER, writerName:Hunter]

==>[songName:RAMBLE ON ROSE, writerName:Hunter]

==>[songName:WHARF RAT, writerName:Hunter]

==>[songName:LADY WITH A FAN, writerName:Hunter]

==>[songName:HE’S GONE, writerName:Hunter]

==>[songName:LOSER, writerName:Hunter]

==>[songName:DEAL, writerName:Hunter]

==>[songName:SUGAREE, writerName:Hunter]

==>[songName:DON’T EASE ME IN, writerName:Traditional]

==>[songName:UNCLE JOHNS BAND, writerName:Hunter]

==>[songName:SCARLET BEGONIAS, writerName:Hunter]

==>[songName:EYES OF THE WORLD, writerName:Hunter]

==>[songName:US BLUES, writerName:Hunter]

==>[songName:TERRAPIN STATION, writerName:Hunter]

==>[songName:STELLA BLUE, writerName:Hunter]

gremlin>

1.7 Conclusion

Gremlin is a useful vendor-agnostic tool for large graph traversal and querying. It is capable of per-
forming its graph traversal in a distributed manner through the Gremlin Traversal Machine which
can coordinate the distributed traversal over the network. Its inclusion in the Apache Tinkerpop
graph computing framework means it can support many different online transactional processes
(OLTP) and online analytics processes (OLAP) systems. Gremlin’s syntax provides a functional
programming interface reminiscent of Scala and JavaScript callbacks. This will feel very familiar
to Scala programmers, and the fact that Gremlin has Scala support seems to point to this lineage.

Version 1.0 Page 4



Gremlin

Overall, Gremlin provides an expressive, straightforward way to traverse and query distributed
graphs.

Version 1.0 Page 5



Bibliography

[1] Think Aurelius. Titan: Distributed graph database, 2018.

[2] Blazegraph. Blazegraph: Graph database & application, 2018.

[3] Datastax. The benefits of the gremlin graph traversal machine, 2018.

[4] Apache Software Foundation. Apache giraph, 2018.

[5] Apache Software Foundation. Apache hadoop, 2018.

[6] Apache Software Foundation. Apache spark, 2018.

[7] Apache Software Foundation. Apache tinkerpop, 2018.

[8] OrientDB. Orientdb: Graph database — multi-model database, 2018.

[9] Apache Tinkerpop. The gremlin graph traversal machine and language, 2018.

6


