
Chapter 1

GraphChi

Contributed by Steven Krieg

1.1 Background

As graph processing evolves to handle larger and more complex problems, so does the compu-
tational cost. Large graphs can contain trillions of vertices and edges, and the time and space
costs of many fundamental graph algorithms scale quadratically or worse. As a result, many graph
problems are impossible to compute without extremely powerful hardware, complex distributed
systems, or both. This led researchers at Carnegie Mellon University to ask the question: how can
we perform effective, large-scale graph computation when the size of the problem exceeds the size
of physical memory? In 2012, they declared their answer: GraphChi [4].

The fundamental idea behind GraphChi is captured in the inaugural paper’s subtitle, ”Large-
Scale Graph Computation on Just a PC.” To do this, it uses secondary storage as an overflow
buffer when computational size exceeds physical memory. To mitigate the poor performance of I/O
operations on secondary storage devices, GraphChi incorporates a novel ”Parallel Sliding Windows”
(PSW) method, which organizes data in an attempt to minimize the number of I/O operations.
It thus sacrifices optimal performance for the ability to perform vertex-centered operations like
PageRank and collaborative filtering on arbitrarily large graphs. The rest of this chapter explores
the key details of GraphChi’s design, execution model, and performance.

1.2 Expressing Graphs

GraphChi expresses a graph G as a set of vertices V and a set of edges E such that G = {V,E}.
Each vertex v ∈ V has an associated label value. Each edge e ∈ E is a 2-tuple (u, v) such that
u ∈ V and v ∈V. All edges are directed, meaning (u, v) 6= (v, u). u is called the source and v is
called the destination.

A graph can be input from different file formats, most notably an edge list or adjacency list [3].
In order to more efficiently handle random disk reads and writes, GraphChi includes a preprocessor
called Sharder. It first partitions all vertices into a series of intervals, each representing one step
of an execution phase. Sharder attempts to partition vertices such that the in-degree (count of
edges for which a given vertex is the destination) distribution is uniform across intervals. Edges are
then partitioned into shards such that each shard is associated with exactly one interval. A shard
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Figure 1.1: All vertices are partitioned into P intervals. Each interval owns exactly one shard which
contains all edges for which the destination vertex is in the associated interval. Figure from [4].

contains an ordered list of all edges for which the destination vertex v is in the interval associated
with that shard. Figure 1.1 shows a diagram of the partitioned graph.

Each shard is stored as a text file during processing. Within each shard, edges are sorted
according to the source vertex’s position within the set of intervals (the importance of this will
become clear in section 1.5). Sharder also creates a file containing the in- and out-degree of each
vertex. This file is utilized during main execution by the Parallel Sliding Windows (PSW) algorithm,
which will be described in section 1.5.

1.3 Syntax

GraphChi is a vertex-centered platform, like Pregel [7], Giraph [1], or GraphLab [5]. In this model
programmers must ”think like a vertex,” an assume that each vertex has access to all the infor-
mation it needs to perform its own function, may not be aware of the rest of the graph beyond its
immediate neighbors. Key to execution is the ”vertex update function,” which is performed by each
vertex, often in spatial or temporal isolation from other vertices. Vertices can communicate with
neighbors by message passing and, once they have finished local computation and have no incoming
messages, can vote to halt the program. Computation generally continues as a series of execution
steps until every vertex has voted to halt. ”Thinking like a vertex,” thus provides a powerful
approach to processing graphs in a distributed manner. In the aforementioned systems, distribut-
ing computation means partitioning the graph across multiple machines in a cluster. However, in
GraphChi, distribution refers to the interval partitioning described in section 1.2. All computation
is performed on one machine, but only a portion of the graph may be active in memory during any
point in execution. A GraphChi programmer must consider this and think like a vertex.

The original and most polished version of GraphChi is written in C++. There is also a Java
version available on GitHub and an experimental Scala version [3]. The C++ implementation is
a well-defined object-oriented interface using standard C++ syntax. To create an application, a
programmer can define a new class that extends the predefined GraphChiProgram class, which
templated to allow the programmer to specify arbitrary data types for vertices and edges. A custom
class can implement the following functions, which are included virtually in GraphChiProgram:

• before iteration()

• after iteration()
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• before exec interval()

• update()

After defining the new class, a programmer (within the main method) initializes a graphchi engine
object, sets execution parameters like memory budget, and passes an instance of the extended
GraphChiProgram class to the graphchi engine.run() function. Results can be accessed via
standard C++ calls to the engine object’s other member functions and data.

1.4 Key Graph Primitives

GraphChi processes graphs as directed, so an edge e = {u, v} 6= {v, u}. Undirected graphs can
be supported by adding mirrored edges during a pre-pre-processing step. In this case, each edge
ei = {u, v} has a mirror edge e′i = {v, u}, but this potentially doubles the size of the edge set. The
set of vertices and set of edges are each assigned a data type, which can be defined as any standard
or arbitrary C++ data type.

1.5 Execution Model

After Sharder partitions a graph into intervals and shards (section 1.2), an algorithm called Paral-
lel Sliding Windows (PSW) drives the program’s execution. The goal of PSW is simple: optimize
performance by minimizing the number of random I/O operations. In order to do this, it relies
heavily on Sharder’s pre-processing. Recall that each execution step of GraphChi is represented
by an interval, which contains the set of vertices whose update function will be performed during
that step. Each interval owns exactly one shard, a file which contains all the edges for which the
destination vertex is in the associated interval. If we were only concerned with a vertex’s in-edges,
this would be sufficient. However, distributed graph algorithms generally require a vertex to have
knowledge of its out-edges. In GraphChi’s case, the out-edges for a given vertex may be split across
several shards. Duplicating edge information doubles storage requirements and incurs a significant
performance penalty due to the increased number of random I/O operations. PSW is GraphChi’s
solution to this problem.

Figure 1.2: Example execution of the PSW algorithm. During each execution interval, GraphChi
loads into memory the interval’s vertices (not pictured), the interval’s corresponding shard (in
brown), and the required edges from each other shard (the part of each shard that is covered by
a window). The edges in each shard are ordered by source vertex such that a window only slides
over the full shard once in an execution cycle. Figure from [4].

During an execution step, the current interval’s vertices are loaded from secondary storage into
memory. The engine then loads into memory each associated edge from its shard in secondary
storage. Normally this would involve a significant I/O cost. However, Sharder’s pre-processing
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guarantees that the order of edges within each shard corresponds to the order in which intervals
will be processed. This means that when the engine begins a new execution interval, it can safely
assume the edges it needs are immediately following its current position in each shard. In the first
interval, the windows are at the beginning of each shard, and as the execution cycle progresses
the windows slide over each section of the shard, until the last interval when each window is
focused on the end of its shard. The full contents of each shard are thus loaded into memory only
twice throughout a full execution cycle: once in full when its owning interval is being executed,
and once as the sum of PSW’s partial loads throughout the other execution intervals. Figure 1.1
demonstrates an example of PSW’s movement during a 4-interval execution.

1.6 Examples

This section describes two example problems. The first visualizes execution of the PSW algorithm
on a toy graph, and the second demonstrates an implementation of PageRank via the GraphChi
C++ interface.

1.6.1 Parallel Sliding Windows on a Toy Graph

Figure 1.3: An example of 2 execution intervals on a toy graph. Yellow indicates portions of each
shard that are currently loaded in memory. Additional details of each step are provided below.
Figure from [4].

A demonstration of the PSW algorithm is pictured in Figure 1.3. Sharder has partitioned
vertices 1-2 into interval 1, and vertices 3-4 into interval 2. Execution interval 1 begins in (a).
Shard 1, containing all edges for which 1 or 2 are the destination, is loaded in full. Shards 2 and
3, which each contain edge(s) for which 1 or 2 are the source, are partially loaded. In (b), vertices
1 and 2 perform their update function, and the new edges values are written to disk. Interval
1 terminates. Execution interval 2 begins in (c) and continues through (d), repeating the same
process but with vertices 3-4. Note the shifted position of the sliding windows.

1.6.2 PageRank on GraphChi

Code Segment 1.1 shows the core pieces of the main function for a PageRank program. This code
assumes a PageRankProgram class has already been defined (see Section .1 for the additional code).

Code Segment 1.1: PageRankDriver.cpp [3]

1 #include "graphchi_basic_includes.hpp"

2 using namespace graphchi;
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3
4 typedef float VertexDataType;

5 typedef float EdgeDataType;

6
7 int main(int argc, const char** argv) {

8 /*

9 Set parameters and perform other housekeeping.

10 */

11
12 // Initialize the namespace.

13 graphchi_init(argc, argv);

14
15 // Initialize the engine. Assumes the arguments have already been defined.

16 graphchi_engine<VertexDataType, EdgeDataType> engine(filename, nshards, scheduler, m);

17
18 // Instantiate PageRankProgram and start the engine.

19 PagerankProgram program;

20 engine.run(program, num_iters);

21
22 // From our results retrieve the top 10 vertices and store them in a vector.

23 std::vector<vertex_value<VertexDataType>> results

24 = get_top_vertices<VertexDataType>(filename, 10);

25
26 /*

27 Perform other operations...

28 */

29 }

1.6.3 Performance

GraphChi’s designers decided to utilize secondary storage to process larger graphs with the knowl-
edge that I/O operations would slow computation. However, within the framework of this decision
they sought to optimize performance as much as possible. A comprehensive evaluation is beyond
the scope of this chapter, but evaluation methods and results are detailed in the original paper
[4] as well as the subsequent work of other researchers. The designers of GraphChi were satisfied
with its performance, which, when run on a 2012 Mac Mini, generally processed the graph algo-
rithms within 1, and occasionally 2, orders of magnitude when compared with fully distributed
solutions like GraphLab or PowerGraph. The authors of [8] found a community detection algo-
rithm implemented in GraphChi outperformed its MapReduce counterpart. However, MapReduce
is known to be a poor platform for processing large graphs, so this is not surprising. The authors
of [6] conducted a series of experiments using Giraph and GraphChi, concluding that GraphChi’s
performance was not as competitive as GraphChi’s designers claimed. Other research has offered
solutions for improving memory management [2] and preprocessing performance [9]. It has sparked
significant conversation (as of Nov. 2018 the original paper has 778 citations), and piqued the
curiosity of many researchers.

1.7 Conclusion

GraphChi offers a unique solution to the problem of resource constraints in large graph computation.
The usefulness of its implementation is highly contextual, but in such cases it may enable solutions
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that would have been impossible in other systems. Additionally, it has demonstrated, in the
context of graph algorithms, the power behind the question, ”What could we accomplish if we
weren’t limited by x...?” And for that, if nothing else, it deserves acknowledgement.
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.1 Appendix: PageRankProgram Class Definition

[Not sure how best to format this.]

Code Segment 2: PageRankProgram.cpp [3]

1 struct PageRankProgram : public GraphChiProgram<VertexDataType, EdgeDataType> {

2
3 /* Performed locally by each vertex. */

4 void update(graphchi_vertex<VertexDataType, EdgeDataType> &v, graphchi_context &ginfo) {

5 float sum = 0;

6 // Initialize vertex and out-edges.

7 if (ginfo.iteration == 0) {

8 for(int i = 0; i < v.num_outedges(); i++) {

9 graphchi_edge<EdgeDataType>* edge = v.outedge(i);

10 edge->set_data(1.0 / v.num_outedges());

11 }

12 v.set_data(RANDOMRESETPROB);

13 }

14 else {

15 // Get the sum of each in-neighbor’s score.

16 for(int i = 0; i < v.num_inedges(); i++) {

17 float val = v.inedge(i)->get_data();

18 sum += val;

19 }

20
21 // Calculate my score based on my neighbors’ scores.

22 float pagerank = RANDOMRESETPROB + (1 - RANDOMRESETPROB) * sum;

23
24 // Communicate my new score to each out-neighbor.

25 if (v.num_outedges() > 0) {

26 float pagerankcont = pagerank / v.num_outedges();

27 for(int i=0; i < v.num_outedges(); i++) {

28 graphchi_edge<float>* edge = v.outedge(i);

29 edge->set_data(pagerankcont);

30 }

31 }

32
33 // Save my score as the new vertex value.

34 v.set_data(pagerank);

35 } // end else

36 } // end update()

37 } // end PageRankProgram
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