Chapter 1

STINGER: Spatio-Temporal
Interaction Networks and Graphs
Extensible Representation

Contributed by Tim Shaffer

1.1 Background

STINGER [I] is a general-purpose graph data structure that supports streaming updates and is
designed for efficient parallel processing. Social network interactions, business intelligence, and
other live data sources can produce an an enormous number of events. To process these and other
more static applications such as those in bioinformatics, it is necessary to handle extremely rapid
updates and large graphs. In addition, using the collected graph data effectively requires streaming
and parallel algorithms suitable for use online at these scales. STINGER is designed to handle
millions of updates per second on commodity hardware, and graph sizes of millions to billions of
edges and vertices.

In addition to the graph primitives themselves, the implementation of STINGER comes with
a number of tools and algorithms for working with graphs. These include streaming clustering
coefficients & connected components, parallel agglomerative clustering, and a number of other
algorithms. STINGER also allows direct access to the graph primitives in parallel for implementing
custom algorithms efficiently.

STINGER was primarily developed at the Georgia Institute of Technology. STINGER is im-
plemented as a C library that can be linked into other programs, and comes with bindings for
Python. STINGER is also bundled with an RPC server to allow using it without linking the
library directly into applications, or over the network from multiple clients. The project web
site is at http://www.stingergraph.com/. The source code is available on Github at https:
//github.com/stingergraph/stinger.

1.2 Expressing Graphs

STINGER operates on sparse, in-memory representations of directed graphs. Applications may
write checkpoints to disk to resume processing after a failure or other interruption. The API is
designed to support dynamic changes to the graph, allowing for additions, changes to weights, and

1

http://www.stingergraph.com/
https://github.com/stingergraph/stinger
https://github.com/stingergraph/stinger

STINGER

removals of vertices and edges. STINGER does not impose significant restrictions on the structure
or properties of the graph. Thus users have flexibility in expressing domain-specific information as
graphs.

Because of its focus on performance and scalability, STINGER does not allow elements of the
graph to contain arbitrary amounts of data. STINGER is, however, designed to support arbitrary
numbers of edges and high-degree vertices. Vertices are tagged with type and weight. Edges are
tagged with type, weight, and timestamps. These fields are required to fit in 64 bit integers,
ensuring compact data structures. Using vertex and edge types it is possible to encode multiple
“layers” of information in the graph. Thus rather than allowing extensive annotations on graph
elements, STINGER encourages users to encode additional information as different vertex and edge
types in the same graph.

1.3 Syntax

The reference implementation of STINGER is written as a C library. Documentation generated
from the header files is available at http://www.stingergraph.com/doxygen/index.html. There
are functions to perform basic operations on the graph, e.g. inserting edges,

int stinger_insert_edge (struct stinger * G,
int64_t type,
int64_t from,
int64_t to,
int64_t weight,
int64_t timestamp
)

setting vertex weights,

int64_t stinger_set_vweight (struct stinger * S_,
int64_t i_,
int64_t weight_
)

removing all edges of a particular type,

void stinger_remove_all_edges_of_type (struct stinger * G,
int64_t type
)

and so on. Naming of functions and arguments is fairly self-explanatory. STINGER’s API also
includes a number of convenience functions, such as stinger_incr_edge_pair and related functions
for working with edge pairs to simulate an undirected graph. The API includes additional functions
for checking the in-degree/out-degree of a vertex, counting the total number of edges in a graph,
and other operations on the low-level graph primitives and the graph itself.

STINGER provides a set of macros for performing some operation on all vertices, edges, etc.

STINGER_FORALL_EDGES_OF_VTX_BEGIN (STINGER_,
VTX

Version 1.0 Page 2

http://www.stingergraph.com/doxygen/index.html

STINGER

For example, the above macro marks a block of code to be run for all edges of a given vertex. This
macro block must be closed by a corresponding STINGER FORALL _EDGES_OF _VTX_END macro. There
are corresponding macros for iterating over all edges of a particular type, all vertices, and so on. It
is possible to specify a filter, such as iterating only over edges modified after some specified time.

Utility functions are provided for batch inserts, reading/writing data on disk, translating
to/from other formats such as CSR, and related operations. A number of algorithm implemen-
tations are included with STINGER as well. These make use of the core operations discussed
above. Each algorithm implementation has its own interface and requirements, so it is difficult to
give a summary here.

1.4 Key Graph Primitives

STINGER’s core graph primitives are vertices and edges. These primitives can be annotated with
limited information such as weights and types. All graphs in STINGER are directed, but conve-
nience functions are provided for simulating undirected graphs. STINGER’s low-level primitives
are intended to be used directly in implementing graph algorithms. Thus there is no need for
STINGER to include a query language or other abstractions. Instead, STINGER focuses on a
performant and user-friendly interface to its few core primitives.

1.5 Execution Model

A key design consideration for STINGER is efficient parallel execution. STINGER, assumes a multi-
core, shared memory machine. This could be a commodity desktop machine, a large server, or a
supercomputer such as Cray XMT2. STINGER'’s iteration macros automatically take advantage
of OpemMP to parallelize tasks. In addition, the STINGER data structure itself has several design
features to enable parallel execution. The vertices of the graph are stored in an array, so that it is
trivial to parallelize iteration over all vertices. All adjacency lists are stored in fixed-sized blocks
where each block contains only edges of a single type. For insertions and removals, it is possible
to split and merge edge blocks without reallocating the entire edge list. When iterating over all
edges incident to a vertex, each block is processed in parallel. STINGER also maintains global edge
lists to allow iteration over all edges in the graph. This allows iteration over edges without first
searching through vertices. Each edge type used in the graph is stored in its own global list. The
global edge list for a particular type points to every block containing edges of that type. Thus it is
possible to iterate only over edges of a given type, or to iterate over all edge types in parallel. Just
as when iterating over edges incident to a vertex, the blocks of edges allow for easy parallelization.
STINGER does not provide full ACID semantics. It does, however, ensure consistency when using
the parallel iteration macros.

1.6 Examples

This example, taken from the official release at the time of writing, demonstrates computing the
approximate and exact diameter of a graph. It is written in C4++ and uses an implementation of
Dijkstra’s algorithm (also provided) to find shortest paths in the graph.

//
// Created by jdeeb3 on 5/24/16.
//

Version 1.0 Page 3

STINGER

#include "diameter.h"
#include "shortest_paths.h"

/**

* this algorithm gives an approximation of the graph diameter.

* It works by starting from a source vertex, and finds an end vertex that is farthest away
* This process is repeated by treating that end vertex as the new starting vertex and ends
* when the graph distance no longer increases

* Inputs: S- the graph itself, nv - the total number of active verticies in the graph,

* source - a starting vertex

* dist - the variable that will hold the resulting diameter, and ignore_weights - a flag

* that controls wheither a user

* wants to consider the weights along the edge or not.

*/

int64_t pseudo_diameter(stinger_t * S,

int64_t NV ,

int64_t source,
int64_t dist,

bool ignore_weights){

//int64_t source = 1; // start at the first vertex in the graph,

//this could be any vertex
dist = O;
int64_t target = source;

std::vector<int64_t> paths(NV);

while(1){
int64_t new_source = target;
paths = dijkstra(S, NV, new_source, ignore_weights);
int64_t max = std::numeric_limits<int64_t>::min();
int64_t max_index = O;
for(int64_t i = 0; i< NV; i++){

if (paths[i] > max and paths[i] != std::numeric_limits<int64_t>::max()){

max = paths[i];
max_index = i;

}

if (max > dist){
target = max_index;
//source = new_source;
dist = max;

}
else{
break;
}
}
return dist;
}
/%%

* this algorithm gives an exact diameter for the graph.
Version 1.0

Page 4

STINGER

* Tt runs Dijkstras for every vertex in the graph, and returns the maximum shortest path
* Inputs: S- the graph itself, nv - the total number of active verticies in the graph

*/

int64_t
exact_diameter(stinger_t * S, int64_t NV){

std: :vector<std::vector <int64_t> > all_pairs (NV, std::vector<int64_t>(NV));

all_pairs = all_pairs_dijkstra(S, NV);

int64_t max = std::numeric_limits<int64_t>::min();

for(int64_t i = 0; i< NV; i++){

for (int64_t j = 0; j < NV; j++){
if (all_pairs[i][j] > max and all_pairs[i][j]
I= std::numeric_limits<int64_t>::max()){
max = all_pairs[i] [j];

3

return max;

1.7 Conclusion

STINGER provides a powerful platform for working with large, dynamic graphs. The core prim-
itives used in STINGER are general enough to support a wide variety of graph-based problems.
STINGER has been used successfully in astrophysics, bioinformatics, and numerous other fields.
The reference interface for STINGER is a C library, but Python bindings and an RPC server are
provided as well. STINGER is designed to handle streaming updates and includes streaming and
parallel implementation of a number of graph algorithms. The STINGER data structure is designed
to allow fast updates as data changes over time, and to take advantage of parallel computing power
when available. STINGER works on both commodity hardware and highly parallel supercomputers
without extensive setup.

Version 1.0 Page 5

Bibliography

[1] David A Bader, Jonathan Berry, Adam Amos-Binks, Daniel Chavarria-Miranda, Charles Hast-
ings, Kamesh Madduri, and Steven C Poulos. Stinger: Spatio-temporal interaction networks
and graphs (sting) extensible representation. Georgia Institute of Technology, Tech. Rep, 2009.

	STINGER: Spatio-Temporal Interaction Networks and Graphs Extensible Representation
	Background
	Expressing Graphs
	Syntax
	Key Graph Primitives
	Execution Model
	Examples
	Conclusion

