
HavoqGT
Brian A. Page

bpage1nd.edu
September 27, 2018

Scale-Free Graphs

• A Scale-Free graph is a graph whose vertex degree
distribution follows a power law.

1

• Hub - a vertex where
vdeg >> avgdeg

• Fewer hubs of
drastically increased
degree

Scale-Free Graphs

• Pose significant workload distribution challenges

• Data set size vs node memory issues

• Communication overhead challenges for distributed
implementations

2

HavoqGT: Origins

Roger Pearce, Maya Gokhale, Nancy Amato

• Asynchronous Visitor Model[1,2]

• Distributed Asynchronous Visitor Model[3]

• Parallel graph traversal for large scale-free graphs
• Code Available at: https://github.com/LLNL/HavoqGT
• Documentation: https://llnl.github.io/havoqgt/index.html

3

https://github.com/LLNL/HavoqGT
https://llnl.github.io/havoqgt/index.html

Asynchronous Visitor Model

• Vertices kept in DRAM, associated edge list stored in NVRAM
(SSD, etc.)

– allows larger dataset use without massive IO penalty
(39% as measured in [2])

4

• Visitor application specific kernel that applied to each vertex
• Uses priority queue(s) to queue visitors for traversal by

visitors
• Visitors traverse a graph and return/update based on kernel

implementation.

Asynchronous Visitor Model

• Independent threads or
processes schedule work on
other’s work queues via a
visitor queue

• Priority based on vertex ID

• Load imbalance heavily
reliant on graph structure

5

HavoqGT: Objectives

• Design highly scalable graph traversal
framework for very large scale-free data sets

• Minimize memory and network latency
• Improve storage and workload imbalance

caused by high degree hubs
• Develop techniques that tolerate data latancies

6

HavoqGT: Graph Representation

• Input graph from file
• Older implementations used distributed vertex sets

and associated edge-lists
• Latest: adjacency list generated from compressed

sparse matrix (?)

7

HavoqGT: Execution

1. Read in graph

2. Perform delgate partitioning and load balancing

3. Create and queue initial visitors

4. Perform traversal as per algorithm design

5. End traversal when all visitor queues are empty (no
other vertices needs to be traversed)

8

HavoqGT: Visitor

• User defines vertex-centric
behavior to be executed on
traversed vertices

• Have the ability to pass visitor
state to other vertices

• Only operate on the subset of
adjacent edges local to the
partition

9

HavoqGT: Delegates

• Delegates are hubs or very high degree vertices

• They are main cause of load imbalance in scale-free
graphs

• Maintain a copy of the state for the vertex and a
portion of the adjacency list of the vertex.

• When visited, a visitor operates only on the subset
of edges managed by the local delegate

10

HavoqGT: Partitioning

• Delegates are distributed amongst partitions such
to insure balanced work distribution

• One Delegate chosen as controller

• Edges are moved to any partition to further correct
imbalance 11

Algorithm Design
• Non-delegate visitor behavior is traditional traversal method

specific

• Delegate behavior must be chosen for each visitor

• Controller commands are selected for a visitor’s return procedure

12

Algorithm Design Cont.

• Controller and delegate operations are coordinated through
asynchronous broadcast and reduction via MPI

• A controller can broadcast commands to all delegates or choose
to not propagate visitors to other delegates by calling
terminate_visit()

13

Example: BFS

14

Example: BFS

15

1) Create graph type holder

2) Read in graph and create/populate proper graph object

3) Perform partitioning and distribute graph

4) Call Breadth First Search function

Development Progress

• Framework only a couple of years old

• LLNL staff and interns are in active
development

• Precise documentation for usage and
rational are quite limited

16

References
[1] Roger Pearce, Maya Gokhale, and Nancy M. Amato. 2010. Multithreaded

Asynchronous Graph Traversal for In-Memory and Semi-External Memory. In
Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SC '10). IEEE
Computer Society, Washington, DC, USA, 1-11. DOI:
https://doi.org/10.1109/SC.2010.34

[2] Roger Pearce, Maya Gokhale, and Nancy M. Amato. 2013. Scaling Techniques
for Massive Scale-Free Graphs in Distributed (External) Memory. 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing. Boston, MA,
USA. 1. DOI: https://doi.org/10.1109/IPDPS.2013.72

[3] Roger Pearce, Maya Gokhale, and Nancy M. Amato. 2014. Faster parallel
traversal of scale free graphs at extreme scale with vertex delegates. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC '14). IEEE Press, Piscataway, NJ, USA, 549-
559. DOI: https://doi.org/10.1109/SC.2014.50

17

