Neod|

Brian DuSell

What is Neo4j?

e Neo4jis a “graph database
management system”

o cf. relational database management
system

o Like SQL for graphs

o Instead of defining tables and
columns, we define nodes and
relationships

e Uses a SQL-like language called
Cypher Query Language to query

name: "Angela Garcia"

and update graphs MATCH (nicole:Actor {name: 'Nicole Kidman'})-[:ACTED IN]->(movie:Movie)
WHERE movie.year < $yearParameter
RETURN movie

Background

e Designed to deal with databases of
graph-structured data
o Often more natural representation
than relational tables
o Claims significant speedups over
RDBMS
e Relatively new

e Developed by Neo4;j, Inc.
o Founded in 2007
o Based near San Francisco, Sweden,
and elsewhere

Using Neo4;

e Open-source community edition and # pip install neodj-driver
closed—source enterprise edition from neo4j.vl import GraphDatabase, basic auth
dri =G hDatab .dri
e Can be run as a server or embedded e e
. . . auth=basic_auth("neo4j", "whistles-contract-home"))
111 an apphcatlon session = driver.session()
e Implemented in Java cypher_query = '
MATCH (n) '
e Drivers exist for major languages BETURH f9(n) Sas

LIMIT $limit

(Python, JavaScript, Java, etc.)

. . . o results = session.run(cypher query,
e Driver communicates with server via parameters={"limit": 31/3}) —He

“bOlt” pI‘OtOCOl for record in results:
print(record['id'])

o HTTP is also an option
Using Neo4j with Python

Property Graph Model

name: “Brian” name: “Justin”

Nodes: graph vertices

o Nodes have one or more labels that FRIENDS_WITH
specify node type

Relationships: directed edges

between nodes

o Each one has exactly one relationship type
o Can have multiple edges between same nodes

Properties: key-value pairs that can
be attached to both nodes and
relationships

o Values have their own type system with

ints, floats, strings, etc. message: “Graphs are cool!”
posted at: “Oct 2, 2018 11:30 AM”

Property Graph Model - Movie Database Example

name: "Christopher McQuarrie"

title: "Kung Fu Panda 3",
year:
runtime:
countries:
languages: [
released: 2016-01-29,
plot: "Continuing his legendary adventures of awesomeness..."

2131,
: ["USA", "China"],
i "Swedish", "German"],

n Angela Garcia"

Cypher Query Language

e Declarative language
inspired by SQL
e Intentionally similar to

MATCH |(m:Movie)<-[: RATED] (u:User)

SQL and best learned by WITH m.tltle AS movie, COUNT(*) AS reviews
example RETURN movie, reviews
e Unlike SQL, the language ORDER BY reviews DESC

LIMIT 5;

includes data types for
lists, maps, and paths “How many reviews does each Matrix movie have?”

e Standardization attempt
via openCypher

Pattern Syntax

e Describes patterns of nodes,
relationships, and attributes in graphs
with ASCII art

e Nodes are in (parentheses),
relationships are in [brackets],
properties are like {key: value

e Arrows can be written in either
direction or omitted

e Binds data to variable names like n

e Names $1ikeThis are named
parameters

e Same syntax used for both matching
and creating data

CREATE (n {name: Svalue})
Create a node with the given properties.

CREATE (n Smap)
Create a node with the given properties.

UNWIND $1listOfMaps AS properties
CREATE (n) SET n = properties

Create nodes with the given properties.

CREATE (n)-[r:KNOWS]->(m)
Create a relationship with the given type and direction;
bind a variable to it.

CREATE (n)-[:LOVES {since: $value}]->(m)

Create a relationship with the given type, direction, and
properties.

(n:Person)
Node with Person label.

(n:Person:Swedish)
Node with both Person and Swedish labels.

(n:Person {name: $value})
Node with the declared properties.

()-[r {name: Svalue}]-()
Matches relationships with the declared properties.

(n)-->(m)
Relationship from n to m.

n)--(m
;{e)lat(ioi\ship in any direction between n and n.
(n:Person)-->(m)
Node n labeled Person with relationship to m.
(m)<-[:KNOWS]-(n)
Relationship of type KNoWs from n to m.
(n)-[:KNOWS| : LOVES]->(m)
Relationship of type KNows or of type LOVES from n to m.

(n)-[r]->(m)
Bind the relationship to variable r.

(n)-[*1..5]->(m)
Variable length path of between 1 and 5 relationships
from ntom.

(n)-[*]1->(m)
Variable length path of any number of relationships
from n to m. (See Performance section.)

(n)-[:KNOWS]->(m {property: Svalue})
A relationship of type knows from a node n to a node m
with the declared property.

shortestPath((n1:Person)-[*..6]-(n2:Person))
Find a single shortest path.

allShortestPaths((n1:Person)-[*..6]->(n2:Person))
Find all shortest paths.

size((n)-->()-->())
Count the paths matching the pattern.

Basic Query Syntax

MATCH a pattern and bind

variable names
MATCH (m:Movie)<-[:RATED]-(u:User)
WHERE m.title CONTAINS "Matrix"

WHERE filters results using a WITH m.title AS movie, COUNT(*) AS reviews

RETURN movie, reviews
ORDER BY reviews DESC
LIMIT ‘S

Boolean expression

WITH (1) assigns values to “How many reviews does each Matrix movie have?”
variable names, and (2)

computes aggregate functions
like COUNT; explicitly separates

query parts
10

Basic Query Syntax

Additional MATCH-WHERE
clauses can be inserted
here to further filter results

RETURN determines what
the query returns much
like SQL SELECT

Fully analogous to SQL

MATCH (m:Movie)<-[:RATED]-(u:User)
WHERE m.title CONTAINS "Matrix"
TH m.title AS movie, COUNT(*) AS reviews

RETURN movie, reviews
ORDER BY reviews DESC
LIMIT ‘S

“How many reviews does each Matrix movie have?”

11

Execution Model

e Supports ACID transactions
e Queries are analyzed and decomposed into > NodeindexSeei

1 row

an execution plan AST
o Vertices are low-level operations like “filter
rows” or “sort”
o Operations input and output sets of rows and
pipe into each other
o Some support lazy evaluation
o Leaves extract data from the database
e Indexes can speed up queries
e Cypher query planner optimizes execution
plans using four pre-computed statistics
including
o Number of nodes with label X
o Number of relationships by type

Result

" P NodeByLabelScan '

B rows

12

Parallelism

Replica Servers

e Declarative API decouples query Query, View.
from execution model Replc A

e Only Enterprise Edition of Neo4;j FI—— e
supports multi-machine clustering i S
(“Causal Clustering”) and “Massively woie -
Parallel Graph Algorithms” library Read Reae &

e Clusters consist of Core Servers and & & »
Read Replicas ot ok e

e Read replicas allow large-scale graph Rt Repngena

Replica Replica Analysis

queries to be widely distributed

Parallelism

e (Core Servers maintain
synchronized version of data

e Applications communicate only
with Core Servers

e Only Core Servers handle writes

e Data is asynchronously copied to
Read Replicas

e Read-only queries can be
processed in parallel among

Read Replicas

Asynchronous replication

Reads
(graph queries)

Read Replicas

14

'|\,'

Movie Database Jaccard Example

Vhat movies are most similar to Inception based on Jaccard similar i[",-" of genres’

® MATCH (m:Movie {title: "Inception"})-[:IN_GENRE]->(g:Genre)<-[:IN_GENRE]-(other:Movie)

WITH m, other, COUNT(g) AS intersection, COLLECT(g.name) AS i

MATCH (m)-[:IN_GENRE]->(mg:Genre)

WITH m,other, intersection,i, COLLECT(mg.name) AS sl

MATCH (other)-[:IN_GENRE]->(og:Genre)

WITH m,other,intersection,i, s1, COLLECT(og.name) AS s2

WITH m,other,intersection,sl,s2

WITH m,other,intersection,sl+filter(x IN s2 WHERE NOT x IN s1) AS union, s1, s2
RETURN m.title, other.title, s1,s2,((1.0*intersection)/SIZE(union)) AS jaccard ORDER

m.title other.title s1

"Inception” "Strange Days" [*Crime", ™
"Mystery"
"Thriller"

"Inception” "Watchmen" [*Crime", ™

"Mystery”,

"Thriller", "

"Inception” "Insomnia" [*Crime", "

"Mystery”,

BY jaccard DESC LIMIT 100

s2 Jaccard

Drama" ["Crime", "Action", "Thriller”, "Sci- 0.85714285714285

, "Sci-Fi", Fi", "Mystery”, "Drama"]

"IMAX", "Action"]

Drama", ['Drama", "Action”, "Sci-Fi", 0.85714285714285
"Sci-Fi", "Mystery", "IMAX", "Thriller"]

IMAX", "Action"]

Drama” ["Crime", "Action", "Mystery" 0.71428571428571

"Sci-Fi", "Drama”, "Thriller”]

Matrix = Table

16

