
The Parallel Boost
Graph Library

Trenton W. Ford
CSE 60742

Background: Boost Graph Library (BGL)

•The BGL is part of the Boost C++ Libraries (80+ individual libraries)

•Boost has been active since September 1st, 1999

•Boost has become a testing ground for some future C++ STL changes

•The BGL was started by Lie-Quan Lee during his graduate studies at Notre
Dame, and Jeremy Siek while a Ph.D student at Indiana University @
Bloomington in 1999

 2

Background: Parallel Boost Graph Library
(PBGL)

•PBGL has been available since 2008

•The Parallel BGL was developed by Doug Gregor(Apple) and Andrew
Lumsdaine(PNNL) while post-docs at Indiana University @ Bloomington in
2008

 3

Parallel BGL Paradigms
•PBGL applies the paradigm of generic programming to provide a library
that allows distributed computation on graphs

•PBGL does not natively support sharing graph data structures across
compute resources, but each resource works on their own graph data
structure

•Graphs are stored as distributed adjacency lists where each 
 compute resource is given ownership of a vertex and its out- 
 going edges. The distribution is normally arbitrary.

 4

Parallel BGL Paradigm: Generics
PBGL applies the paradigm of generic programming:

 5

template function
parameterized on

InputIterator and T.

return type T

object first must be
iterable.

Parallel BGL Paradigm: Nodes and Vertices
Basic Graph Objects and Functions:

 6

Expression Return Type or Description

boost::graph_traits<G>::vertex_descriptor The type for vertex representative objects.

boost::graph_traits<G>::edge_descriptor The type for edge representative objects.

add_edge(u, v, g)

std::pair<edge_descriptor, bool>

add_vertex(vp, g)

vertex_descriptor

Parallel BGL Paradigm: Nodes and Vertices

Selecting Individual Nodes:

 7

Adding Individual Edges:

Parallel BGL Paradigm: Generics and
Concept Taxonomies.

 8

PBGL generics form hierarchies where
children have more strict requirements than
their parents

Generic Graph Requirements: 
Must have associated types that name
vertices and edges (called vertex and edge
descriptors), along with some additional
identification information

Distributed Edge List Graph Requirements:  
Requires that the set of edges local to a process be accessible in
constant time. The union of the edge sets returned on all processes must
be the set of all edges and the pairwise intersection of these edge sets
must be the empty set.

Parallel BGL Paradigm: From Generics to
Graphs

 9

PBGL generics form hierarchies where
children have more strict requirements than
their parents

Graph Type (adjacency_list): 

property maps
attach properties to
each vertex, edge,

or graph adding weight
property, of

datatype double to
all edges

listS & vecS create
a linked list as

storage for edge
and node

information

Parallel BGL Paradigm: From Generics to
Graphs

 10

PBGL generics form hierarchies where
children have more strict requirements than
their parents

Graph Type (distributed_adjacency_list): 

property maps
attach properties to
each vertex, edge,

or graph
adding weight

property, of
datatype double to

all edges

the only change is
the storage

container used for
vertices

Parallel BGL Paradigm: When did MPI get
here?

 11

MPI allows
communication

with the Bulk Syn-
chronous Parallel

(BSP) model - AKA
Process Groups

Process groups abstract the
notion of several processes

cooperating to perform some
computation.

Parallel BGL Paradigm: When did MPI get
here?

 12

To handle the Message Process
Group, several message types were
required.

•send(pg,dest,tag,value)
•receive(pg,source,tag,value)
•probe(pg)
•synchronize(pg)

at the time of the
reference paper,
the authors were

mainly focused on
the MPG

Parallel BGL Paradigm: Message Passing
Commands

 13

•send(pg,dest,tag,value):Send the given value in a message marked with
the given numerical tag to the process with identifier dest. Messages
with a given (source, dest) pair are guaranteed to be received in the
order sent.

•receive(pg,source,tag,value): Receive a message containing value from
process source with the given tag.

•probe(pg):Immediately returns a (source, tag)pair if a message is
available, or a no-message indicator.

•synchronize(pg):Collectively waits until all messages sent by any
process are stored in a buffer at their destinations. All messages sent
prior to synchronization may be immediately received after
synchronization.

Parallel BGL: Using an Algorithm on a
Graph

 14

Parallel BGL: Using an Algorithm on a
Graph

 15

8.Algorithms
• Distributed algorithms
◦ Breadth-first search
◦ Dijkstra's single-source shortest paths
▪ Eager Dijkstra shortest paths
▪ Crauser et al. Dijkstra shortest paths
▪ Delta-Stepping shortest paths

◦ Depth-first search
◦ Minimum spanning tree
▪ Boruvka's minimum spanning tree
▪ Merging local minimum spanning forests
▪ Boruvka-then-merge
▪ Boruvka-mixed-merge

◦ Connected components
▪ Connected components
▪ Connected components parallel search
▪ Strongly-connected components

◦ PageRank
◦ Boman et al. Graph coloring
◦ Fruchterman Reingold force-directed layout
◦ s-t connectivity
◦ Betweenness centrality
◦ Non-distributed betweenness centrality
◦

https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/breadth_first_search.html
https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/dijkstra_shortest_paths.html
https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/dijkstra_shortest_paths.html#eager-dijkstra-s-algorithm
https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/dijkstra_shortest_paths.html#crauser-et-al-s-algorithm
https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/dijkstra_shortest_paths.html#delta-stepping-algorithm
https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/tsin_depth_first_visit.html
https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/dehne_gotz_min_spanning_tree.html
https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/dehne_gotz_min_spanning_tree.html#dense-boruvka-minimum-spanning-tree
https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/dehne_gotz_min_spanning_tree.html#merge-local-minimum-spanning-trees
https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/dehne_gotz_min_spanning_tree.html#boruvka-then-merge
https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/dehne_gotz_min_spanning_tree.html#boruvka-mixed-merge
https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/connected_components.html
https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/connected_components_parallel_search.html
https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/strong_components.html
https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/page_rank.html
https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/boman_et_al_graph_coloring.html
https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/fruchterman_reingold.html
https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/st_connected.html
https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/betweenness_centrality.html
https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/non_distributed_betweenness_centrality.html

PBGL References
• Paper written by Stroustrup, that give a framework for generic

programming methodology in C++. (http://www.stroustrup.com/
oopsla06.pdf) 

• Link to the original PBGL Paper. (https://people.csail.mit.edu/jshun/
papers/PBGL.pdf) 

• Boost’s Graph Library Online User Guide (https://www.boost.org/
doc/libs/1_68_0/libs/graph/doc/) 

• METIS Graph Format Explanation (https://people.sc.fsu.edu/
~jburkardt/data/metis_graph/metis_graph.html)

 16

http://www.stroustrup.com/oopsla06.pdf
http://www.stroustrup.com/oopsla06.pdf
https://people.csail.mit.edu/jshun/papers/PBGL.pdf
https://people.csail.mit.edu/jshun/papers/PBGL.pdf
https://www.boost.org/doc/libs/1_68_0/libs/graph/doc/
https://www.boost.org/doc/libs/1_68_0/libs/graph/doc/
https://people.sc.fsu.edu/~jburkardt/data/metis_graph/metis_graph.html
https://people.sc.fsu.edu/~jburkardt/data/metis_graph/metis_graph.html

Questions?

