
POWERGRAPH
BY KYLE SWEENEY

POWERGRAPH FROM GONZALES ET AL FROM CARNEGIE MELLON AND

UNIVERSITY OF WASHINGTON

BACKGROUND – THE PROBLEM

• Natural graphs are everywhere,

from Facebook, to Twitter, to Netflix

to Genomics.

• Natural Graphs suffer from Power-

Law degree Distribution

BACKGROUND – DISTRIBUTION PROBLEM

• Power-Law graphs are very difficult to partition well, as they do not have low-

cost balanced cuts

• A common abstraction is the Graph-Parallel Abstraction

• Users provide vertex-programs which will run on vertexes simultaneously and

communicate with one another

• This leads to really high communication overheads on systems like Pregel, GraphLab, etc

SOLUTION - POWERGRAPH

• GAS Decomposition Gather, Apply, Scatter

• You make vertices with really high-degrees parallel

• Vertex Partitioning

• If you perform a vertex cut, that is, split on high-degree vertices, then you can reduce

information

• Take really high degree vertices, and spread them across the network

GATHER, APPLY, SCATTER

• Each are a user defined function applied on the high-degree vertexes

• Gather

• Happens on HDV + neighbor

• Eventually you Add up the results

• Apply

• Happens on the HDV, take the result from Gather

• Scatter

• Let everyone else know HDV updated info, on edges and verticies

HOW TO DO VERTEX CUTS

• Assign edges to machines evenly

• Assign edges as they are loaded

• Placement Strategies

• Random Placement

• Coordiated greedy placement

• Oblivious greedy

PLACEMENT STRATEGIES GREEDY HEURISTICS

• argmin
𝑘
𝐸 𝐴 𝑣𝑣∈𝑉 𝐴𝑖 , 𝐴 𝑒𝑖+𝑖 = 𝑘]

• 𝐴𝑖 is the assignment for the previous i edges.

• Coordinated

• Use a distributed table to maintain values for 𝐴𝑖 𝑣 . Each machine then runs and updates

the table everyone sees. Use local caching

• Oblivious

• Do coordinated, but don’t coordinate

OTHER COOL FEATURES

• Execution Models Synch, Async, Async + Serializable

• Delta caching aka partial sums caching

EXECUTION MODEL
• Synchronous

• Applies Gather, apply, scatter in order, with each phase having a barrier to keep every

computer in step

• Changes made at the end of each step are applied everywhere and visible

• Not exactly efficient, thanks to barriers

• Async

• Runs verticies when cores and network becomes available.

• Data changes happen when they do, and are visible after the change to neighbors

• Serializable

• All parallel execution has corresponding sequential

• Prevents adjacent vertex-programs from running at the same time

HOW ARE GRAPHS EXPRESSED?

• You can write your own parser to represent graphs

• They by default accept graphs generally written as DAGs

• They don’t give away too much info about the internal workings….

SOFTWARE FUNDAMENTALS

• Requires A whole mess of Librarires

• Fundamentally a C++ MPI library

• Boost, zlib, patch, JDK (for hdfs support), libevent, libjson, tcmalloc (optional)

SAMPLE PAGE-RANK
PROGRAM

EVALUATION

C++ IS DUMB, AND PAPER IS OLD

• GraphLab, inc Became Turi, a machine learning platform, now owned by

Apple

• Everything is in Python Now!

• Loads data from Spark, Pandas, SQL databases, JSON, Neo4j

• More focused on machine learning now

PYTHON CODE EXAMPLE:
SSSP

WHERE TO GET IT

• Turi.com

• Get the academic account

• https://github.com/jegonzal/PowerGraph

REFERENCES

• https://www.usenix.org/sites/default/files/conference/protected-

files/gonzalez_osdi12_slides.pdf

• https://www.usenix.org/system/files/conference/osdi12/osdi12-final-

167.pdf

https://www.usenix.org/sites/default/files/conference/protected-files/gonzalez_osdi12_slides.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/gonzalez_osdi12_slides.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/gonzalez_osdi12_slides.pdf

