
Intro to Pregel
Justus Hibshman

9/27/18

Background
Pregel was developed by Google in 2010 as a system to speed up their graph
computations.

Original Paper: “Pregel: A System for Large Scale Graph Processing”

https://dl.acm.org/citation.cfm?id=1807184

Some open source versions:

Apache Giraphe: http://giraph.apache.org/

Phoebus: https://github.com/xslogic/phoebus

https://dl.acm.org/citation.cfm?id=1807184
http://giraph.apache.org/
https://github.com/xslogic/phoebus

Basic Idea: Perform Computation “At” Vertices
● Graphs are directed.
● All vertices have a function computed for them in a “superstep.”
● Vertices can pass messages to each other to be used in the following

superstep - only have explicit knowledge of their outgoing edges.
● Computation stops when all vertices signal that they’re done.

Example: Finding Distance from Start Node

0 inf

inf inf

0 1

1 inf

0 1

1 2

1

1

2

2
3

0 1

1 2

Some More Details
● A superstep happens (conceptually) in parallel over the nodes.
● The function that operates per-node is the same for every node.

● Nodes may send any number of messages in a given superstep.
● Nodes can sent messages to any node provided they have that node’s id.
● Typically nodes just send messages via outgoing edges.
● Order of message reception is undefined.

● Once vertices vote to halt they don’t do any computation until they “awaken”
by receiving another message.

Use
Template <typename VertexValue, typename EdgeValue, typename MessageValue>
class Vertex {
 public:
 virtual void Compute(MessageIterator* msgs) = 0;
 const string& vertex_id() const;
 int64 superstep() const;
 const VertexValue& GetValue();
 VertexValue* MutableValue();
 OutEdgeIterator GetOutEdgeIterator();
 void SendMessageTo(const string& dest_vertex, const MessageValue& message);
 void VoteToHalt();
};

Additional Features
Combiners

● Used to improve performance
● Collapse multiple messages into one (e.g. take a sum of integer messages)
● No guarantees about which messages will be combined
● No guarantees about what order they’ll be combined in

Additional Features
Aggregators

● Used for “global communication, monitoring, and data”
● Nodes can provide a single value to an aggregator at each superstep.
● Values are combined via a “reduction operator.”
● The Result of superstep S’s aggregation is accessible in superstep S+1.

Additional Features
Topology Mutations

● Nodes can request the creation/removal of edges and nodes.
● Node removals precede node additions, which precede...
● Users define handlers for conflicting requests, such as multiple additions of

the same node.

Simplistic PageRank Implementation
class PageRankVertex : public Vertex<double, void, double> {
 public:
 virtual void Compute(MessageIterator* msgs) {
 if (superstep() >= 1) {
 double sum = 0;
 for (; !msgs->Done(); msgs->Next())
 sum += msgs->Value();
 *MutableValue() = 0.15 / NumVertices() + 0.85 * sum;
 }
 if (superstep() < 30) { // In practice would use an aggregator to detect convergence.
 const int64 n = GetOutIterator().size();
 SendMessageToAllNeighbors(GetValue() / n);
 } else {
 VoteToHalt();
 }
 }
};

