SNAP

Justin DeBenedetto

/~. . P

The College of Engineerings «

ar the University of Notre Dame

Stanford Network Analysis Project

e Originally Stanford Network Analysis Platform

e Actively developed since 2004

e |Largest dataset analyzed was Microsoft
Instant Messenger network of 240 million
nodes and 1.3 billion edges

e Built to:
— Handle large graphs efficiently
— Implement many common algorithms
— Allow dynamic network changes

The College of Engineering

ar the Untversity of Notre Dame

SNAP Overview

e 8 graph/network types

e 20 graph generation methods

e >100 graph algorithms

e Available in C++ and as Python module
* Open source

The College of Engineering

ar the Untversity of Notre Dame

Stanford Large Network Dataset
Collection

* Maintained alongside SNAP

e ~80 network datasets
— Online social networks
— Communication networks
— Scientific citation networks
— Collaboration networks
— etc.

The College of Engineering

ar the Untversity of Notre Dame

Comparison to NetworkX

* They consider NetworkX to be similar

* They find SNAP runs 1 to 2 orders of
magnitude faster

e SNAP uses 50 times less memory

e Both can be used for Python

* NetworkX has more flexibility

* Run on single machine

The College of Engineering

ar the Untversity of Notre Dame

Input, Output, Save, and Load

 Can read in various formats
— One edge per line (source target)
— One node per line (source targetl target?2 ...)
— Other established systems like DyNet and Pajek
e Can also build
— Generators
— One node/edge at a time
e Save and load as binary
— Internal representation for faster save/load %

The College of Engineering

ar the Untversity of Notre Dame

Containers

* Each graph/network is implemented in a
container

Table I. SNAP Graph and Network Containers.
Graph Containers

TUNGraph Undirected graphs

TNGraph Directed graphs

TNEGraph Directed multigraphs

TBPGraph Bipartite graphs

Network Containers

TNodeNet Directed graphs with node attributes

TNodeEDatNet Directed graphs with node and edge attributes

TNodeEdgeNet Directed multigraphs with node and edge attributes

TNEANet Directed multigraphs with dynamic node and edge attributes

7he College of Engineering

ar the Untversity of Notre Dame

Interchangeable

e All functionality available on all containers

 To change network type, only change
container

* Implementing algorithm on one container
works on all

 Each node/edge has unique integer id

The College of Engineering

ar the Untversity of Notre Dame

Graph Storage

Balance vector and hash table benefits

Nodes Neighbor adjacency lists Nodes In and out neighbor adjacency lists Nodes In and out edge lists

Edges
L~ [[[[11 - [L[[[[|
S a2 i e T A B ST :
J | e s 34: 3—:‘ e B 711
6| ~t—> 6 -:: . 6 -tt
* 8
4] ——> oo 4]~ - 4]~ 5
” 9
Undirected graph Directed graph Directed multi-graph

Fig. 2. A diagram of graph data structures in SNAP. Node ids are stored in a hash table, and each node has
one or two associated vectors of neighboring node or edge ids.

7he College of Engineering

ar the Untversity of Notre Dame

Common Methods

Table II. Common Graph and Network Methods.

Nodes

AddNode Adds a node

DelNode Deletes a node

IsNode Tests, if a node exists

GetNodes Returns the number of nodes

Edges

AddEdge Adds an edge

DelEdge Deletes an edge

IsEdge Tests, if an edge exists

GetEdges Returns the number of edges

Graph Methods

Clr Removes all nodes and edges

Empty Tests, if the graph is empty

Dump Prints the graph in a human readable form
Save Saves a graph in a binary format to disk
Load Loads a graph in a binary format from disk
Node and Edge Iterators

BegNI Returns the start of a node iterator
EndNI Returns the end of a node iterator
GetNI Returns a node (iterator)

NI++ Moves the iterator to the next node
BegEI Returns the start of an edge iterator
EndEI Returns the end of an edge iterator
GetEI Returns an edge (iterator)

EI++ Moves the iterator to the next edge

7he College of Engineering

ar the Untversity of Notre Dame

Sample Iterating

// traverse all the nodes, print out-degree for each node

for (TNGraph::TNodeI NI=Graph->BegNI(); NI<Graph->EndNI(); NI++) {
printf("node %d, outdegree J)d\n", NI.GetId(), NI.GetOutDeg());

}

// traverse all the edges, print source and destination nodes
for (TNGraph::TEdgel EI=Graph->BegEI(); EI<Graph->EndEI(); EI++) {
printf("edge (%d, %d)\n", EI.GetSrcNId(), EI.GetDstNId());
}
Listing 1. Iterating over Nodes and Edges. Top example prints out the ids and out-degrees of all the nodes. Bottom

example prints out all the edges as pairs of edge source node id and edge destination node id. These traversals
can be executed on any type of a graph/network container.

7he College of Engineering

ar the Untversity of Notre Dame

Benchmarks

e Uses 50x less memory than NetworkX

e Uses slightly more memory than other
vector-based systems (iGraph)

e 15x faster than iGraph for save/load

e 200x faster than NetworkX for save/load

e Comparable speed to iGraph otherwise
— Much faster than NetworkX
— Allows dynamic networks (unlike iGraph)

The College of Engineering

ar the Untversity of Notre Dame

Graph Generators

Table lll. Graph generators in SNAP.

Category Graph Generators

Regular graphs Complete graphs, circles, grids, stars, and trees;

Basic random graphs Erdos-Rényi graphs, Bipartite graphs,
Graphs where each node has a constant degree,
Graphs with exact degree sequence;

Advanced graph models Configuration model [Bollobas 1980],
Ravasz-Barabasi model [Ravasz and Barabasi 2003],
Copying model [Kumar et al. 2000],
Forest Fire model [Leskovec et al. 2005],
Geometric preferential model [Flaxman et al. 2006],
Barabasi-Albert model [Barabasi and Albert 1999],
Rewiring model [Milo et al. 2003],
R-MAT [Chakrabarti et al. 2004],
Graphs with power-law degree distribution,
Watts-Strogatz model [Watts and Strogatz 1998],
Kronecker graphs [Leskovec et al. 2010],
Multiplicative Attribute Graphs [Kim and Leskovec 2012b].

7he College of Engineering

ar the Untversity of Notre Dame

Some Included Algorithms

Table IV. Graph manipulation and analytics methods in SNAP.

Category

Graph Manipulation and Analytics

Graph manipulation

Connected components
Node connectivity

Node centrality algorithms
Triadic closure algorithms
Graph traversal

Community detection

Spectral graph properties
K-core analysis

Graph motif detection
Information diffusion

Network link and node prediction

Graph rewiring, decomposition to connected
components, subgraph extraction, graph type
conversions;

Analyze weakly, strongly, bi- and 1-connected
components;

Node degrees, degree distribution, in-degree,
out-degree, combined degree, Hop plot, Scree plot;
PageRank, Hits, degree-, betweenness-, closeness-,
farness-, and eigen-centrality, personalized PageRank;
Node clustering coefficient, triangle counting, clique
detection;

Breadth first search, depth first search, shortest
paths, graph diameter;

Fast modularity, clique percolation, link clustering,
Community-Affiliation Graph Model, BigClam, CoDA,
CESNA, Circles;

Eigenvectors and eigenvalues of the adjacency matrix,
spectral clustering;

Identification and decomposition of a given graph to
k-cores;

Counting of small subgraphs;

Infopath, Netinf;

Predicting missing nodes, edges and attributes.

7he College of Engineering

ar the Untversity of Notre Dame

Citations

http://snap.stanford.edu/

SNAP: A General-Purpose Network Analysis and
Graph-Mining Library (ACM 2016)

The College of Engineering

ar the Untversity of Notre Dame

http://snap.stanford.edu/

Questions?

The College of Engineering

ar the Untversity of Notre Dame

More
Examples

Get degree distribution pairs (out-degree, count):

>>> snap.GetOutDegCnt(G9, CntV)
>>> for p in CntV:
>>> print "degree %d: count %d" % (p.GetVall(), p.GetVal2())

Generate a Preferential Attachment graph on 100 nodes and out-degree of 3:
>>> G10 = snap.GenPrefAttach(100, 3)
Define a vector of floats and get first eigenvector of graph adjacency matrix:

>>> EigV = snap.TF1tV()

>>> snap.GetEigVec(G10, EigV)

>>> nr = 0

>>> for f in EigV:

>>> ne =14

>5> print "%d: ¥.6f" % (nr, f)

Get an approximation of graph diameter:

>>> diam = snap.GetBfsFullDiam(G10, 10)
Count the number of triads:

>>> triads = snap.GetTriads(G10)

Get the clustering coefficient:

>>> cf = snap.GetClustCf(G10)

The College of Engineering

ar the Untversity of Notre Dame

