
Giraph

Neil	Butcher



Background
• Giraph scalable	platform	for	implementing	
graph	algorithms

• Developed	by	Apache
• Based	off	‘Pregel’
• Utilizes	Hadoop	MapReduce	framework	to	
target	graph	problems

• Open	Source

1



Advantages of Solving Problems with 
Giraph
• Message-based	communication:	no	locks
• Global	synchronization:	no	semaphores
• Simple	to	program
• Massively	parallel:	task	based	programming
• Fault	tolerant:	Saves	intermediate	results

2



Giraph Algorithms: Basic Idea
• Algorithms	are	written	from	the	perspective	of	
a	vertex

• Vertices	send	messages	to	each	other	to	share	
pertinent	information

3



How it Works
• ’compute’ function	has	ability	to:
– modify	state	of	vertex	and	its	outgoing	edges
– Can	send	messages	to	other	vertices
– Receive	messages	sent	in	previous	superstep

• Things	that	happen	during	a	superstep:
– A	‘compute’	function	is	invoked	on	each	vertex	that	
received	a	message	in	the	previous	superstep

– Next	superstep begins	only after	all	vertices	have	
completed	their	work

– If	no	messages	are	in	flight,	halt	program	
4



Single Source Shortest Path Algorithm

5

Read	
updates	
from	other	
vertices,	find	
minimum

Send	
distance	
to	other	
vertices



Single Source Shortest Path Example

6



Single Source Shortest Path Example

7



Single Source Shortest Path Example

8



Single Source Shortest Path Example

9



Single Source Shortest Path Example

10



More Complex Example: PageRank

11



Giraph Job Lifetime

12



Implementing Algorithm in Giraph
• Define	a	Vertex class
– Subclass	of	existing	implementations

• Define	a	VertexInputFormat to	read	the	graph
• Define	VertexOutputFormat that	defines	how	
to	extract	result	based	on	Vertex	final	state

• Many	other	features	can	be	utilized	to	
improve	performance

13



Aggregators
• Each	vertex	can	store	values	that	can	be	read	
by	all	vertices	in	proceeding	superstep

• Can	maintain	values	(sum,	min,	max,	
accumulate,	user	defined,	ect)

• Aggregators	must	be	registered	on	master

14



Combiners
• User	defined	function	to	combine	messages	
before	being	sent	or	delivered

• Saves	on	network	and	memory

15



Checkpointing
• Can	be	expensive	but	necessary
• Ensures	no	single	point	of	failure
• Store	work	at	user	defined	intervals
• Restart	on	failure

16



Zookeeper Responsibilities: 
Computation State 
• Handles	partition/worker	mapping
• Global	state
• Checkpoint	paths,	aggregator	values,	statistics

17



Master Responsibilties: Coordination

• Assigns	partitions	to	workers
– Hashmapping is	default
– Can	be	user	defined

• Monitors	workers	
• Coordinates	supersteps (ending,	starting	ect)

18



Worker Responsibilities: Vertices

• Workers	are	assigned	vertices
• Perform	compute
• Pass	messages	between	vertices
• Computes	local	aggregation	values

19


