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Background

* Giraph scalable platform for implementing
graph algorithms

* Developed by Apache
e Based off ‘Pregel’

e Utilizes Hadoop MapReduce framework to
target graph problems

* Open Source
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Advantages of Solving Problems with
Giraph

* Message-based communication: no locks

* Global synchronization: no semaphores

* Simple to program

e Massively parallel: task based programming
* Fault tolerant: Saves intermediate results

The College of Engineering

ar the Untversity of Notre Dame




Giraph Algorithms: Basic Idea

* Algorithms are written from the perspective of
a vertex

* \ertices send messages to each other to share
pertinent information

The College of Engineering

ar the Untversity of Notre Dame




How it Works

* ‘compute’ function has ability to:
— modify state of vertex and its outgoing edges
— Can send messages to other vertices
— Receive messages sent in previous superstep

* Things that happen during a superstep:

— A ‘compute’ function is invoked on each vertex that
received a message in the previous superstep

— Next superstep begins only after all vertices have
completed their work

— If no messages are in flight, halt program
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Single Source Shortest Path Algorithm

public void compute(Iterable<DoubleWritable> messages) T
double minDist = Double.MAX_VALUE; Read
for (DoubleWritable message : messages) { updates
minDist = Math.min(minDist, message.get()); from other
} vertices, find
if (minDist < getValue().get()) { minimum
setValue(new DoubleWritable(minDist)); R —
for (Edge<LongWritable, FloatWritable> edge : getEdges()) { Send
double distance = minDist + edge.getValue().get(); distance
sendMessage(edge.getTargetVertexId(), new DoubleWritable(distance)); | O other
} vertices
} —
voteToHalt();

}
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Single Source Shortest Path Example
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Single Source Shortest Path Example
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Single Source Shortest Path Example
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Single Source Shortest Path Example
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Single Source Shortest Path Example
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More Complex Example: PageRank

'/ Essence of PageRank in Giraph
public compute(lterator<DoubleWritable> msglterator) { _ )
Our neighbors send us their
if (getSuperstep() >= 1) {

double sum = 0; values, we add them up
while (msglterator.hasNext(}) {
sum += msglterator.next().get();

} And compute

. lue =
DoubleWritable vertexValue our new value

new DoubleWritable((0.15f / vertex.getNumVertices()) + 0.85f * sum);
vertex.setVertexValue(vertexValue);

}

if (getSuperstep() < getConf().getInt(SUPERSTEP_COUNT, -1)) { Do this a pre_set

number of times

long edges = getNumQutEdges();
sendMsgToAllEdges(
new DoubleWritable(vertex.getVertexValue().get() / edges));
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22 And send our new value to
23 }else{ b d |

24 voteToHalt(); everypoay eise...

25} e .

26 1 or it's time to quit
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Giraph Job Lifetime

Setup Teardown
* load the graph from disk * write back result
* assign vertices to workers * write back aggregators

* validate workers health

N

Compute Synchronize

* assign messages to workers * send messages to workers
* iterate on active vertices * compute aggregators

* call vertices compute() * checkpoint
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Implementing Algorithm in Giraph

e Define a Vertex class

— Subclass of existing implementations
* Define a VertexinputFormat to read the graph

 Define VertexOutputFormat that defines how
to extract result based on Vertex final state

* Many other features can be utilized to
improve performance
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Aggregators

* Each vertex can store values that can be read
by all vertices in proceeding superstep

 Can maintain values (sum, min, max,
accumulate, user defined, ect)

» Aggregators must be registered on master
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Combiners

e User defined function to combine messages
before being sent or delivered

e Saves on network and memory
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Checkpointing

* Can be expensive but necessary
* Ensures no single point of failure
e Store work at user defined intervals

e Restart on failure
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Z.ookeeper Responsibilities:
Computation State

* Handles partition/worker mapping
* Global state

 Checkpoint paths, aggregator values, statistics
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Master Responsibilties: Coordination

e Assigns partitions to workers
— Hashmapping is default
— Can be user defined

e Monitors workers

e Coordinates supersteps (ending, starting ect)

The College of Engineering

ar the Untversity of Notre Dame




Worker Responsibilities: Vertices

 Workers are assignhed vertices
* Perform compute

* Pass messages between vertices

e Computes local aggregation values
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