Giraph

Neil Butcher

=D

7he College of Engineering:

ar the University of Notre Dame

/,-
~ S8 .

~
<




Background

* Giraph scalable platform for implementing
graph algorithms

* Developed by Apache
e Based off ‘Pregel’

e Utilizes Hadoop MapReduce framework to
target graph problems

* Open Source

The College of Engineering

ar the Untversity of Notre Dame




Advantages of Solving Problems with
Giraph

* Message-based communication: no locks

* Global synchronization: no semaphores

* Simple to program

e Massively parallel: task based programming
* Fault tolerant: Saves intermediate results

The College of Engineering

ar the Untversity of Notre Dame




Giraph Algorithms: Basic Idea

* Algorithms are written from the perspective of
a vertex

* \ertices send messages to each other to share
pertinent information

The College of Engineering

ar the Untversity of Notre Dame




How it Works

* ‘compute’ function has ability to:
— modify state of vertex and its outgoing edges
— Can send messages to other vertices
— Receive messages sent in previous superstep

* Things that happen during a superstep:

— A ‘compute’ function is invoked on each vertex that
received a message in the previous superstep

— Next superstep begins only after all vertices have
completed their work

— If no messages are in flight, halt program

The College of Engineering

ar the Untversity of Notre Dame



Single Source Shortest Path Algorithm

public void compute(Iterable<DoubleWritable> messages) T
double minDist = Double.MAX_VALUE; Read
for (DoubleWritable message : messages) { updates
minDist = Math.min(minDist, message.get()); from other
} vertices, find
if (minDist < getValue().get()) { minimum
setValue(new DoubleWritable(minDist)); R —
for (Edge<LongWritable, FloatWritable> edge : getEdges()) { Send
double distance = minDist + edge.getValue().get(); distance
sendMessage(edge.getTargetVertexId(), new DoubleWritable(distance)); | O other
} vertices
} —
voteToHalt();

}

The College of Engineering

ar the Untversity of Notre Dame




Single Source Shortest Path Example

The College of Engineering

ar the Untversity of Notre Dame




Single Source Shortest Path Example

The College of Engineering

ar the Untversity of Notre Dame




Single Source Shortest Path Example

The College of Engineering

ar the Untversity of Notre Dame




Single Source Shortest Path Example

The College of Engineering

ar the Untversity of Notre Dame




Single Source Shortest Path Example

The College of Engineering

ar the Untversity of Notre Dame




More Complex Example: PageRank

'/ Essence of PageRank in Giraph
public compute(lterator<DoubleWritable> msglterator) { _ )
Our neighbors send us their
if (getSuperstep() >= 1) {

double sum = 0; values, we add them up
while (msglterator.hasNext(}) {
sum += msglterator.next().get();

} And compute

. lue =
DoubleWritable vertexValue our new value

new DoubleWritable((0.15f / vertex.getNumVertices()) + 0.85f * sum);
vertex.setVertexValue(vertexValue);

}

if (getSuperstep() < getConf().getInt(SUPERSTEP_COUNT, -1)) { Do this a pre_set

number of times

long edges = getNumQutEdges();
sendMsgToAllEdges(
new DoubleWritable(vertex.getVertexValue().get() / edges));

N b= = = b e et e et e
QWO NOOTUVBEBWNEFEOOOONOUVTIDE WN =

21
22 And send our new value to
23 }else{ b d |

24 voteToHalt(); everypoay eise...

25} e .

26 1 or it's time to quit

-

7he College of Engineering = 1 ¢ > <

ar the Untversity of Notre Dame



Giraph Job Lifetime

Setup Teardown
* load the graph from disk * write back result
* assign vertices to workers * write back aggregators

* validate workers health

N

Compute Synchronize

* assign messages to workers * send messages to workers
* iterate on active vertices * compute aggregators

* call vertices compute() * checkpoint

The College of Engineering

ar the Untversity of Notre Dame




Implementing Algorithm in Giraph

e Define a Vertex class

— Subclass of existing implementations
* Define a VertexinputFormat to read the graph

 Define VertexOutputFormat that defines how
to extract result based on Vertex final state

* Many other features can be utilized to
improve performance

The College of Engineering

ar the Untversity of Notre Dame




Aggregators

* Each vertex can store values that can be read
by all vertices in proceeding superstep

 Can maintain values (sum, min, max,
accumulate, user defined, ect)

» Aggregators must be registered on master

The College of Engineering

ar the Untversity of Notre Dame




Combiners

e User defined function to combine messages
before being sent or delivered

e Saves on network and memory

The College of Engineering

ar the Untversity of Notre Dame




Checkpointing

* Can be expensive but necessary
* Ensures no single point of failure
e Store work at user defined intervals

e Restart on failure

The College of Engineering

ar the Untversity of Notre Dame




Z.ookeeper Responsibilities:
Computation State

* Handles partition/worker mapping
* Global state

 Checkpoint paths, aggregator values, statistics

The College of Engineering

ar the Untversity of Notre Dame




Master Responsibilties: Coordination

e Assigns partitions to workers
— Hashmapping is default
— Can be user defined

e Monitors workers

e Coordinates supersteps (ending, starting ect)

The College of Engineering

ar the Untversity of Notre Dame




Worker Responsibilities: Vertices

 Workers are assignhed vertices
* Perform compute

* Pass messages between vertices

e Computes local aggregation values

The College of Engineering

ar the Untversity of Notre Dame




