
STINGER: Spatio-Temporal
Interaction Networks and
Graphs Extensible
Representation

Tim Shaffer

Big problems are often represented as graphs

▰ Bioinformatics: identifying target proteins
▰ Astrophysics: outlier detection, clustering
▰ Social networks: tracking information spread, relationships

Graphs are enormous and vary over time

Motivation

2

Facebook

▰ ~1 billion users
▰ Average of 130 friends, some accounts much higher
▰ 30 billion user interactions per month

Twitter

▰ 500 million active users
▰ 340 million tweets per day

Example: Social Media

3

Large scale

▰ Memory efficiency
▰ Parallelism

Frequent updates

▰ Fast operations
▰ Partial recomputation

Challenges

4

STINGER is a high-performance graph data structure

▰ Fast insertions, deletions, and updates
▰ Types and weights for edges and vertices
▰ Filtering by timestamp, type, etc.
▰ Parallel graph operations

STINGER

5

Also a library/API for using the data structure

▰ Written in C/C++
▰ Bindings for Python and Java
▰ Assumes shared memory system
▰ Targets x86 and Cray XMT machines

STINGER

6

Data Structure

7

Graph consists of

▰ Vertex array
▰ EType array

Edges are stored in linked lists of edge blocks

EType array is an additional index with pointers to all edges of a
given type

Data Structure

8

Each vertex has a

▰ type
▰ weight
▰ linked list of its outgoing edges

Each edge has a

▰ type
▰ weight
▰ creation and modification timestamp

Data Structure

9

Multiple parallel readers and a single writer

Algorithms can operate serially or in parallel over all nodes, edges,
neighbors, etc.

Does not provide ACID semantics

Data Structure

10

C/C++ library implementation, C interface (no templates)

Types, weights are 64 bit integer values

Parallelism through OpenMP and XMT pragmas

No cluster support

Library

11

▰ Streaming clustering coefficients
▰ Streaming connected components
▰ Streaming community detection
▰ Parallel agglomerative clustering
▰ Streaming Betweenness Centrality
▰ K-core Extraction
▰ Classic breadth-first search

Implemented Algorithms

12

STINGER_FORALL_OUT_EDGES_OF_VTX_BEGIN(S, current.vertex) {

 //for all the neighbors of the current vertex

 int64_t new_cost = cost_so_far[current.vertex] + STINGER_EDGE_WEIGHT;

 if (new_cost < cost_so_far[STINGER_EDGE_DEST]

 || cost_so_far[STINGER_EDGE_DEST] == std::numeric_limits<int64_t>::max()) {

 cost_so_far[STINGER_EDGE_DEST] = new_cost;

 weighted_vertex_t next;

 next.vertex = STINGER_EDGE_DEST;

 next.cost = new_cost;

 frontier.push(next);

Example: Shortest Path

13

Optimized for extremely frequent updates

Fast locking implementation (esp. on Cray XMT)

Batched updates (big improvement)

Performance

14

Performance

15

Performance

16

Benchmarked at 3 million edge updates per second for graphs with
1 billion edges

Streaming and parallel operations greatly reduce computation cost

Partial recomputation greatly reduces cost of updates

Performance

17

Example: connected components of a graph of 500 million edges

▰ Measured 1.26 million updates/second
▰ 137x faster than recomputing

Allows desktop computer to process graphs with millions of
vertices and edges

Big machines can reach billions of edges

Performance

18

