UNIVERSITY OF

&5/ NOTRE DAME

STINGER: Spatio-Temporal
Interaction Networks and

Graphs Extensible
Representation

Tim Shaffer £

Big problems are often represented as graphs

Bioinformatics: identifying target proteins
Astrophysics: outlier detection, clustering
Social networks: tracking information spread, relationships

Graphs are enormous and vary over time

Example: Social Media

Facebook

~1 billion users
Average of 130 friends, some accounts much higher
30 billion user interactions per month

Twitter

500 million active users
340 million tweets per day

Challenges

Large scale

Memory efficiency
Parallelism

Frequent updates

Fast operations
Partial recomputation

STINGER is a high-performance graph data structure

Fast insertions, deletions, and updates
Types and weights for edges and vertices
Filtering by timestamp, type, etc.

Parallel graph operations

Also a library/API for using the data structure

Written in C/C++

Bindings for Python and Java
Assumes shared memory system
Targets x86 and Cray XMT machines

Data Structure

EType Amay High Water Mark L:.-r;glh
en Hi Pir AN
o] |——>| EType 0 |
T T emyper \
z[[[+ enmez \ |]
Physical Vertex ID Logical Vertex Array
0 [a0[To|wo[7|6 —
1 {at]Tijwi[6 [0 | =
cee
2 [a2|T2(W2{0 |1 | >
/ 3
4 [ad|T4|wa[2 [17] = v N
5 |a5|T5|Ws[23[5 | = 4 N
Physical 6 [a6|T6|We| 1 [0 | = K
o !
Logical
Mapper /
’ Edge Block
#Edges | High
Next Block Vater Mark] Smallest | Largest
Edge Block Header EType | VertexID | inthis [.)
Poiitsi Block e Timestamp | Timestamp
Edge |
Edge2
Edge3
Edge4
.
.
.
Adj Vertex| Edge [Timestamp | Timestamp
D Weight ! 2
Edge X
N-l
Physical | Vertex | out-def
Vertex ID | Weight
in-deg Edge Block
Pointer

VType

Data Structure

Graph consists of

Vertex array
EType array

Edges are stored in linked lists of edge blocks

EType array is an additional index with pointers to all edges of a
given type

Data Structure

Each vertex has a

type
weight
linked list of its outgoing edges

Each edge has a

type
weight
creation and modification timestamp

Data Structure

Multiple parallel readers and a single writer

Algorithms can operate serially or in parallel over all nodes, edges,
neighbors, etc.

Does not provide ACID semantics

C/C++ library implementation, C interface (no templates)

Types, weights are 64 bit integer values

Parallelism through OpenMP and XMT pragmas

No cluster support

Implemented Algorithms

Streaming clustering coefficients
Streaming connected components
Streaming community detection
Parallel agglomerative clustering
Streaming Betweenness Centrality
K-core Extraction

Classic breadth-first search

Example: Shortest Path

STINGER FORALL OUT EDGES OF VTX BEGIN (S, current.vertex) {

//for all the neighbors of the current vertex

int64 t new cost = cost so far[current.vertex] + STINGER EDGE WEIGHT;

if (new cost < cost so far[STINGER EDGE DEST]

|| cost so far[STINGER EDGE DEST] == std::numeric limits<int64 t>::max()) {

cost so far[STINGER EDGE DEST] = new cost;
weighted vertex t next;
next.vertex = STINGER EDGE DEST;
next.cost = new cost;

frontier.push (next) ;

Performance

Optimized for extremely frequent updates

Fast locking implementation (esp. on Cray XMT)

Batched updates (big improvement)

D
Q
| =
(1°)
=
-
o
[e
-
D
o

Memory Usage - Small (|V|: 32K, |E|: 256K)

100M

10M

1k

)7
S
Q
)
o
%
S |
Q
%e)
X
Vv
00
Vv
6)
AOQV
Q
N
©
)
77
Q
Q
3
M -~ 74
— w S
i

(9)) @2besn Alowdp

orientdb
neo4j
networkx
titan
bagel
boost

mtgl

Graph Package

stinger
dex
sglite
pegasus-NA

giraph-NA

Performance

Page Rank - Medium (|V|: 1M, |E|: 8M)

1M
100k Y
10k > %, %z
i)
1k Ky
£ 5
= <
= d’\/
100 o
‘P
6
10 —
il l
4 g @ 3 3 9 ® g =z
= o o Q 2 o Q Q Y
s % 3T - £ 3z & = °Z
- =1 x Q. | o5
o wn

Graph Package

Performance

Benchmarked at 3 million edge updates per second for graphs with
1 billion edges

Streaming and parallel operations greatly reduce computation cost

Partial recomputation greatly reduces cost of updates

Performance

Example: connected components of a graph of 500 million edges

Measured 1.26 million updates/second
137x faster than recomputing

Allows desktop computer to process graphs with millions of
vertices and edges

Big machines can reach billions of edges

