Human Versus Biometric Perception of Iris Texture

Kevin W. Bowyer
Schubmehl-Prein Professor
Chair, Computer Science & Engineering
University of Notre Dame
kwb@cse.nd.edu

BldS @ BCC
September 21, 2010
Acknowledgments

This work is supported by the FBI, CIA, IARPA and TSWG under US Army contract W91CRB-08-C-0093.

Opinions and conclusions expressed do not necessarily represent those of our sponsors.
Acknowledgments

This work was done with:
undergrads Sam Fenker, Steve Lagree,
PhD grad (!) Karen Hollingsworth,
co-PI Patrick Flynn.
We do *lots* of biometrics research other than what I will talk about today:

- Iris: “fragile bits” in the iris code, averaging of frames in video, pupil dilation, template aging, …
- Face: 3D, IR, multi-modal, video

(See http://www.cse.nd.edu/~kwb/publications.htm for details.)
In biometrics, each iris is independent of all others, even same or related persons.

Humans readily perceive iris texture similarity that biometrics do not – *Monozygotic irises look a lot alike.*

This suggests new possibilities for iris texture analysis.
Outline

- Biometrics & monozygotic irises
- Human perception of L,R irises
- Human perception of twins irises
- Conclusions & future research
Monozygotic: Left-Right

Conventional wisdom –

“Iris Images of left and right eyes are known to be different.”

Imposter distributions obtained with our data support that left and right irises are different.
Conventional wisdom –

“... comparisons among the eyes of actual monozygotic twins also yielded a result expected for unrelated eyes ...”

Monozygotic: Twins

Identical twins and unrelated persons give very similar imposter distributions.
Our iris biometric results on left and right irises, and on identical twins, agree with results reported by Daugman and others.

But there is more to iris texture!
From viewing large numbers of iris images, we became convinced that there is a similarity in left-right iris texture, and then also in twins.

Basically, there is no related work.
Outline

- Biometrics & monozygotic irises
- Human perception of L,R irises
- Human perception of twins irises
- Conclusions & future research
Experimental materials:

- Left and right irises for 327 persons, from ND_Iris_0405 dataset
- Custom software to control observer experiment

+ ICE; 60K+ LG 2200 images; available to research community.
L-R Iris Texture Similarity

Same person or different persons?
L-R Iris Texture Similarity

- Certain it was matched pair
- Likely it was matched pair
- Can’t tell
- Likely it was NOT matched pair
- Certain it was NOT matched pair
L-R Iris Texture Similarity

Same person

BldS @ BCC September 21, 2010
L-R Iris Texture Similarity

Different persons

BldS @ BCC

September 21, 2010
L-R Iris Texture Similarity

Same person
L-R Iris Texture Similarity

Different persons
L-R Iris Texture Similarity

Same person
L-R Iris Similarity

Experimental method:

- 4 second viewing of image pair
- 210 trials: equal same / different
- Random presentation order
- 5-point rating scale
- 27 naïve observers
L-R Iris Similarity

Distribution of Responses

- Certain it was a matched left-right pair: 25
- Likely it was a matched left-right pair: 30
- Can't tell: 10
- Likely it was NOT a matched left-right pair: 20
- Certain it was NOT a matched left-right pair: 25

Subjects rarely respond with “can’t tell”.

BldS @ BCC

September 21, 2010
90%+ on “certain”; 80% on “likely”.

BldS @ BCC
September 21, 2010
L-R Iris Similarity

Result & Conclusion:

- Naïve observers with 4s viewing are quite accurate at classifying L-R irises as same/different person.
- There is more to iris texture than what is seen by iris biometrics.
Outline

- Biometrics & monozygotic irises
- Human perception of L,R irises
- Human perception of twins irises
- Conclusions & future research
Monozygotic: Twins

- LG 2200 iris video data acquired at Twins Days 2009; Twinsburg, Ohio
- 76 pairs of self-reported identical twins, plus others
- Frames selected for good focus, low occlusion, approximately centered
Twins Iris Similarity

Options for design of the study:

- View the whole iris image
- View only the iris region
- View only the periocular region

We opted for both “iris only” and “periocular” stimulus conditions.
Twins Iris Similarity

- Image pair presented for 3 sec
- 5-point response scale
- 28 subjects (no overlap with L-R)
- Iris-only trials presented first, then periocular trails

BldS @ BCC September 21, 2010
Twins Iris Similarity

First, some “iris only” trials.
Twins Iris Similarity

Twins or Unrelated?
Twins Iris Similarity

Twins.
Twins Iris Similarity

Unrelated.
Twins Iris Similarity

Twins. (28/28 correct)
Twins Iris Similarity

Unrelated. (28/28 correct)
Twins Iris Similarity

Twins. (25/28 incorrect.)
Twins Iris Similarity

Unrelated. (24/28 incorrect.)
Twins Iris Similarity

<table>
<thead>
<tr>
<th></th>
<th>Iris</th>
<th>Periocular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Score</td>
<td>89.8%</td>
<td></td>
</tr>
<tr>
<td>Mean Score</td>
<td>81.3%</td>
<td></td>
</tr>
<tr>
<td>Minimum Score</td>
<td>68.4%</td>
<td></td>
</tr>
</tbody>
</table>
Twins Iris Similarity

Next, some “peri-ocular” trials.
Twins Iris Similarity

Twins or Unrelated?
Twins Iris Similarity

Twins.
Twins Iris Similarity

Twins. (28/28 correct)
Twins Iris Similarity

Unrelated. (28/28 correct)
Twins Iris Similarity

<table>
<thead>
<tr>
<th></th>
<th>Iris</th>
<th>Periocular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Score</td>
<td>89.8%</td>
<td>86.7%</td>
</tr>
<tr>
<td>Mean Score</td>
<td>81.3%</td>
<td>76.5%</td>
</tr>
<tr>
<td>Min Score</td>
<td>68.4%</td>
<td>63.3%</td>
</tr>
</tbody>
</table>
Twins Iris Similarity

- Overall 80% + accurate in twins / non-twins from iris only
- Overall 76% + accurate from periocular
- 92% and 93% accurate on the “certain” responses
Outline

- Biometrics & monozygotic irises
- Human perception of L,R irises
- Human perception of twins irises
- Conclusions & future research
In biometrics, each iris is independent of all others, even of related persons.
The Main Point

Stated differently –

a sample grid of phase of Gabor filter responses cannot detect similarity in monozygotic irises.
Humans readily perceive iris texture similarity that biometrics do not.
Stated differently –

Monozygotic irises DO have similar texture: humans can see it, biometrics cannot.
The Main Point

The discovery of texture similarity that is not captured by iris biometrics suggests new avenues for iris texture analysis.
Future Research

- What other relationships can be detected from iris texture?
- Can we combine “peri-ocular” and iris texture to improve performance?
Future Research

- How accurately could trained observers classify images?
- What is a good procedure for observers matching images?
Questions?

Additional detail on our biometrics research:
http://www.cse.nd.edu/~kwb/publications.htm

Survey of iris biometrics:

“Fragile” bits in the iris code:

Pupil dilation effects:

Template aging: