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Abstract. We describe an ensemble learning approach that accurately learns 
from data which has been partitioned according to the arbitrary spatial 
requirements of a large-scale simulation wherein classifiers may be trained only 
the data local to a given partition.  As a result, the class statistics can vary from 
partition to partition; some classes may even be missing from some partitions. 
In order to learn from such data, we combine a fast ensemble learning algorithm 
with Bayesian decision theory to generate an accurate working model of the 
simulation. Results from a simulation of an impactor bar crushing a storage 
canister and from region recognition in face images show that regions of 
interest are successfully identified. 

1   Introduction 

We consider the problem of dealing with an amount of data too large to fit in the 
memory of any one computer node and too bandwidth intensive to move around to 
neighboring nodes, a problem which has far reaching implications [1].   Since the data 
cannot be moved around between nodes, there may exist no logical grouping other 
than the order in which it was originally stored.  Such a problem exists for the United 
States Department of Energy’s Advanced Simulation and Computing program [2], 
wherein a supercomputer simulates a hypothetical real-world event.  Data is stored on 
disks attached to compute nodes according to its spatial location within the 3D 
simulation.  The concern is that the storage allocation for the simulation optimizes for 
balanced and efficient computation, without regard to conditions that might make it 
easy or difficult for a machine learning algorithm to use the resulting data. 
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In analyzing these simulations, developers and users want to spot anomalies which 
may take days or weeks to find in a massive simulation.  So, marking some areas of 
interest and finding others in the same or similar types of simulations can greatly 
reduce the time to debug and analyze a simulation.  Generally, experts will manually 
designate salient areas in the simulation as “interesting” according to personal, 
subjective criteria.  This process would be markedly sped up by analyzing those 
points and suggesting new points across each compute node.   

In this paper, we show examples from a simulation of a storage canister being 
crushed by an impactor bar from above at approximately 300 miles per hour.  In order 
to illustrate how the complete simulation appears, a visualization of the partitions is 
provided below in Figure 1.  The different shades of grey represent the partitioning of 
the simulation in a distributed environment.  Note that pieces of the impactor bar 
crushing the canister are also broken up spatially according to the partition. 

 

Fig. 1. A visualization of the data as distributed across compute nodes.  There are four 
partitions shown in different gray levels as the storage canister is crushed. 

As a result of the partitioning, areas of saliency may be limited to only a few 
nodes.  Salient points, being few in number, exhibit a pathological minority class 
classification problem.  In the case of a partition having zero salient points, a single-
class “classifier” will be learned.  Furthermore, a prominent event on one node is not 
necessarily indicative of saliency on another node experiencing a similar event. 

We show that it is possible to obtain an accurate prediction of salient points even 
when the data is broken up arbitrarily in 3D space with no particular relation to 
feature space.  Results on this data set indicate that experts working with much larger 
simulations can benefit from the predictive guidance obtained from only a small 
amount of relevant data. 
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2   Data description 

In this paper we look at experiments in which a canister is rapidly crushed much 
like a person might crush a soda can.  The walls of the canister buckle under the 
pressure and top of the canister accelerates downward until it meets the bottom.  In 
our experiments we observe 44 slices of time in which the above event is simulated 
and recorded. 

2.1   Physical and Spatial Characteristics 

Ten physical variables are stored for each of 10,088 nodes within each of 44 time 
steps.  They are the displacement on the X, Y, and Z axes; velocity on the X, Y, and Z 
axes; acceleration on the X, Y, and Z axes; and “Equivalent Plastic Strain” which is a 
metric for the stress on the surface of the canister [3].  The total number of data 
samples is 44•10088=443,872. 

The data for each of the time steps is divided spatially according to the compute 
node to which it is assigned.  The partitioning is performed vertically along the Y axis 
of the canister, dividing the canister into 4 disjoint spatial partitions of roughly equal 
size.  Each compute node can see only one of these partitions, and we stipulate that it 
is too expensive in time or storage space to move data to another compute node.   

2.2   Train and Test Sets 

For every time step, those pieces of the canister that have buckled and been 
crushed are marked as salient.  At the beginning of the simulation, before the 
impactor bar has made contact, there are no salient nodes within the mesh.  As time 
progresses and the canister collapses, more and more nodes are marked salient.   

The process of marking salient nodes within the mesh can be as precise as the 
expert demands.  However, a high level of precision requires a correspondingly high 
level of effort marking the data.  In order to model a practical scenario where an 
expert is more interested in saving time than catering to the nuances of Machine 
Learning, we have included a fair amount of noise in the class labels by using tools 
which mark areas as salient rather than individual points—there are over 10,000 
points per time step.  Since the impactor bar and the canister are so close in proximity, 
it is quite reasonable to assume the bar will often have areas incorrectly marked as 
salient.   

In each time step and in each partition, saliency is designated in the above fashion.  
For each partition, data present in the time steps are collapsed into two segments, a 
training set and a test set, according to the time step number: even time steps are 
combined into a training set, odd time steps are combined into a test set.  Therefore 
our experiments utilize four partitions each having two data sets, for a total of eight 
data sets. 
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3   Classification system 

For each training set developed on each compute node, we utilized Breiman’s 
random forest algorithm to rapidly generate an ensemble of classifiers.  The 
motivation for using this ensemble technique stems from the inherent speed benefit of 
analyzing only a few possible attributes from which a test is selected at an internal 
tree node.  A complete description of the random forest algorithm can be found in [4].  
Its accuracy was evaluated in [5] and shown to be comparable with or better than 
other ensemble generation techniques. 

Classification of a test point within the simulation involves prediction by each 
partition’s random forest. Because our algorithm is designed to work when only a few 
compute nodes have salient examples, a simple majority vote algorithm may fail to 
classify any salient points if the number of compute nodes trained with salient 
examples is less than half of the number of compute nodes.  In a large-scale 
simulation it is very likely that there will be nodes which have no salient examples in 
training.  Therefore we must consider the priors:  the probability that any given node 
contained salient examples and therefore is capable of predicting an example as 
salient.  A breakdown of our algorithm follows.   

 
p(w1|x) = number of ensembles voting for class w1 for example x, 

P(w1)   =  number of ensembles capable of predicting class w1 
Classify as w1 if:  p(w1|x)/P(w1) > p(w2|x)/P(w2) 
Classify as w2 if:  p(w1|x)/P(w1) < p(w2|x)/P(w2) 

 
Of course, this is nothing more than Bayesian decision theory applied to the 

majority vote for a two class problem.  Moving to an n-class problem is trivial: 
 
  Classify as wn:  argmaxn (p(wn|x)/P(wn)) 

4   Experiments 

The random forest of each partition returns a single prediction for a class.  Those 
predictions are combined into a single prediction for the example as outlined above 
using the Bayesian majority vote with priors.  Training is performed on the data 
contained in the even time steps.  Predictions on odd time steps are compared to the 
marked saliency in the odd time steps to obtain an estimate of the true error.  We also 
obtain predictions on even time steps to model the resubstitution error.   
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Fig. 2.   Left:  Ground truth as labeled in time step 3.  Right:  Predicted class labels. 

Fig. 3.  Left:  Ground truth as labeled in time step 19.  Right:  Predicted class labels. 

 

Fig. 4.  Left:  Ground truth as labeled in time step 37.  Right:  Predicted class labels. 
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Fig. 5.  Left:  Training data as labeled in time step 4.  Right:  Predicted class labels. 

 

Fig. 6.  Left:  Training data as labeled in time step 20.  Right:  Predicted class labels. 

 

Fig. 7.  Left:  Training data as labeled in time step 38.  Right:  Predicted class labels. 
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5   Results 

The goal of the prediction stage is to direct experts to additional salient regions. 
Unfortunately, a metric for determining how accurate an algorithm is in finding and 
classifying regions is non-trivial.  For this reason, we provide figures to help illustrate 
the accuracy of our approach.  Figures 2, 3, and 4 show the algorithm’s predictive 
power as the canister is still in the process of being crushed.  In Figures 5, 6, and 7 we 
observe the resubstitution error on the training data.  Darker areas indicate regions 
which have been classified as salient.  Ensemble predictions are provided to the right 
of the labeled data in each of the figures. 

For conventional reasons, we provide an estimate of the true error being 25.4% 
using the methods outlined above.  Because this error is based on a point to point 
comparison between the test set and the predictions upon the test set, and because we 
know “regions” are salient rather than “points,” we could potentially lower the error 
by utilizing image processing techniques such as erosion and dilation.  

6   Previous Work Revisited 

In revisiting our previous work [1], we witness definite improvements in the 
classification accuracy of face images obtained from the FERET database [6] using 
the approach discussed here.  In those experiments we utilized a k-nearest centroid 
algorithm which lacked adequate speed for terascale data sets but achieved reasonable 
results given our assumption of spatially disjoint subsets.  An example from the 
database is shown below in Figure 8. 

  

Fig. 8.   Image from the FERET database showing marked saliency for both “Interesting” and 
“Somewhat Interesting” classes for eight partitions delineated by white lines.  The “Interesting” 
class contains the eyes and mouth. The “Somewhat Interesting” class contains only the 
eyebrows. 

In previous experimentation with a k-nearest centroid algorithm we were able to 
identify salient regions, however regions of noise were also labeled.  These 
experiments did not use the Bayesian majority vote.  We compare those results with a 
forest of 1000 random forest trees trained on each of the eight partitions in 
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combination with Bayesian majority voting using priors.  Many fewer pixels are 
labeled incorrectly using this later method.  A comparison of the k-nearest centroid 
algorithm using 11 centroids to eight random forests of 1000 decision trees is shown 
in Figure 9.  Neither provide for significant differentiation between the “interesting” 
and “somewhat interesting” classes due to the weakness of the derived feature 
attributes. 

 

  

Fig. 9.   Left:  Saliency predictions using 11 centroids.  Right:  Bayesian majority vote with 
priors using 1000 random forest trees per partition. 

7   Summary and Discussion 

Some simulations must be broken up across multiple processors in order to obtain 
results in a reasonable amount of time.  The method of breaking data into pieces is not 
necessarily valuable, and possibly even harmful, to machine learning algorithms, as it 
violates the usual assumption that class statistics will be the same across all the 
training data and the test data.  In this paper we have shown how large simulation data 
broken up non-intuitively into spatial regions may be classified using a combination 
of fast ensemble techniques and Bayesian decision theory.   

Our preliminary results on a relatively small problem indicate that our approach 
has merit.  In our simulation of the crushing of the storage canister, the resultant 
predictions appear more accurately classified than the training data which has been 
labeled haphazardly in accordance with time constraints placed upon experts.  This 
may signify that the algorithm learning the underlying function which determines 
which points are salient, with the overlap of uninteresting points outweighing the very 
large number of uninteresting points overall.  A comparison with our previous work 
using facial data also showed improvement.   

In preparation for larger simulations with greater minority class problems, we 
conjecture that we might assign a bias, or risk (Rn(wn|x)), to a particular class 
utilizing the same sound Bayesian theories off which we based our algorithm: 

 
  Classify as wn:  argmaxn (Rn(wn|x)/P(wn)) . 
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It may also be possible to assign dynamic weights to the classifiers as shown in [7]. 

We believe the speed associated with the rapid generation of ensemble classifiers 
will enable the tractable prediction of saliency in much larger data sets.  The general 
problem of creating an ensemble from data that was partitioned without regard to the 
simplicity of the machine learning algorithm is an important practical problem that 
merits additional attention. 
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