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Driven by key law enforcement and commercial applications, research on face recognition
from video sources has intensified in recent years. The ensuing results have demonstrated

that videos possess unique properties that allow both humans and automated systems
to perform recognition accurately in difficult viewing conditions. However, significant
research challenges remain as most video based applications do not allow for controlled
recordings.

In this survey, we categorize the research in this area and present a broad and
deep review of recently proposed methods for overcoming the difficulties encountered in
unconstrained settings. We also draw connections between the ways in which humans
and current algorithms recognize faces. An overview of the most popular and difficult

publicly available face video databases is provided to complement these discussions.
Finally, we cover key research challenges and opportunities that lie ahead for the field
as a whole.
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1. Introduction

Research on face recognition from video has intensified throughout the last decade.

This body of work has generally focused on achieving accurate face recognition

results in significantly degraded viewing conditions.1,2 In traditional face image ac-

quisition settings, such as passport agencies or police stations, nuisance variables

ranging from head pose to facial expression are controlled. In contrast, video surveil-

lance systems cannot be as obtrusive, so the activities of the recorded individuals

and the effects of the environment can vary significantly. Numerous performance

evaluation efforts have demonstrated that face recognition algorithms that operate

well in controlled environments tend to suffer in surveillance contexts.1,2,3,4 These

issues have motivated the development of face recognition algorithms that draw

from the wealth of information provided by videos to compensate for the poor

viewing conditions encountered in uncontrolled viewing scenarios.

Specifically, Zhou et al.4 assert that videos afford three useful properties that

can aid in recognition:

1
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1. A set of observations - a video sequence contains multiple images of the same

face that can potentially show how it appears under different conditions.

2. Temporal dynamics - videos contain temporal information that still images do

not possess.

3. 3D information - in an extension to the first property, Zhou et al.4 note that a

sequence of video frames can display the same object from a number of different

angles, i.e. 2D videos implicitly contain 3D geometric information.

Moreover, neurological evidence suggests that humans exploit these properties by

using both the structure of facial features and idiosyncratic facial movements to rec-

ognize others.5 Temporal dynamics play an especially strong role in the recognition

of familiar people.

Conversely, the following nuisance factors can arise in unconstrained face recog-

nition applications:

• Pose variation - uncontrolled cameras can record non-ideal face shots from a

variety of angles, causing the correspondences between pixel locations and points

on the face to differ from image to image.

• Illumination variation - an individual may pass underneath lights with a range

of relative positions and intensities throughout the course of one or more videos,

so that the surface of the face appears different at different times.

• Expression variation - the appearance of the face changes as the facial expression

varies.

• Scale variation - the face will occupy larger or smaller areas in the video frames

as it moves towards or away from the camera, and, in the worst case, the spatial

resolution of the face can decrease to the point where it becomes unrecognizable.

Spatial resolution can also depend on the properties of the camera, such as the

depth of field of its lens.

• Motion blur - significant blur can obscure the face if the camera exposure time

is set too long or the head moves rapidly.

• Occlusion - objects in the environment can block parts of the face, making the

tasks of recognizing the face and distinguishing it from the background more

difficult.

These factors may cause the differences in appearance between distinct shots of

the same person to be greater than those between two people viewed under similar

conditions.6 Although pose and illumination are traditionally regarded as two of

the most challenging nuisance factors, Phillips et al.7 present evidence that some

of the other factors listed above have nearly as significant of an impact on face

recognition performance in uncontrolled contexts.

These properties and problems are well known throughout the academic, com-

mercial and governmental sectors. The Foto-Fahndung report produced by the Ger-

man BKA presents an evaluation of three different commercial face recognition

systems in a railway station surveillance scenario.1 Subjects were recorded and rec-



April 20, 2012 16:2 FaceRecognitionFromVideoDraft17

Face Recognition from Video: A Review 3

ognized as they descended a stairway or escalator. Pose was partially controlled

since the video cameras were placed in front of the stairway. However, illumination

conditions changed at night because half of the artificial lights were deactivated.

The cameras required wider apertures and longer exposure times to compensate

for the degradation in illumination. As a result, the video frames contained more

motion blur artifacts. The evaluated systems yielded recognition rates around 60%

throughout the day, but night-time performance dropped to 10-20% due to prob-

lems with blur and illumination.

Similarly, the 2002 Face Recognition Vendor Test (FRVT) report contains an

evaluation that compares face recognition from still images to recognition from

videos.3 In an experiment conducted on a face database comprised by still im-

ages of 63 subjects, a number of commercial recognition systems for image based

face recognition performed worse when tasked with the identification of faces from

videos. The still images from the database contained frontal face views, while the

videos displayed speaking subjects with varying expressions. The faces in the videos

appeared significantly different from those in the database images, causing a large

number of recognition errors.

The Multiple Biometric Grand Challenge featured a problem involving face

recognition from videos in which illumination, movement and head pose were not

controlled.2 The video dataset included high resolution (1440x1080) and standard

resolution (720x480) sequences with subjects walking toward the camera. Out of

four state-of-the-art commercial face recognition algorithms, the best performers

on the high and standard resolution videos only reached about 70% and 40% verifi-

cation rates, respectively. All algorithms performed significantly better on the high

resolution videos. Resolution dependent performance differences notwithstanding,

off-frontal poses were observed to play a large role in the poor verification per-

formance of all of the systems. In each of these studies, the ability to recognize

faces suffered due to variations that intensify the differences in appearance between

images of the same individual.

Much of the research on face recognition from video has focused on handling

these nuisance factors while taking advantage of the unique characteristics of video

data. The studies included in this body of work can be broadly categorized into two

groups depending on which video properties they exploit, as shown in Fig. 1. Set-

based approaches treat videos as unordered collections of images and take advantage

of the multitude of observations, whereas sequence-based approaches explicitly use

temporal information to increase efficiency or enable recognition in poor viewing

conditions.

Although set-based approaches do not depend on the ordering of face images,

they exploit the quantity and variety of observations to achieve robustness to de-

graded viewing conditions. These methods differ in terms of whether they fuse

information over the observations before or after matching.8,9 Prior to matching, in-

formation can be fused across images at the data or feature levels. Super-resolution

techniques operate at these levels to enhance the resolution of the face. Similarly,
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Fig. 1: A Taxonomy of the Face Recognition from Video Literature.

3D modeling techniques leverage the potentially wide range of views contained

within a set of frames to recover the 3D structure of face, which can aid in attain-

ing invariance to pose changes. The entire set of observations can be modeled as a

manifold or a probability distribution, representations that can potentially allow for

robustness to variations in pose, illumination and expression as well as provide the

convenience and power of well-established statistical and mathematical techniques.

Alternatively, fusion can take place at the level of match scores, ranks or decisions

for subsets of images that were deliberately selected to contain a wide variety of

appearance conditions or high quality observations.

In contrast to the set-based approaches, sequence-based methods explicitly use

temporal cues during recognition. Spatiotemporal techniques leverage both appear-

ance and motion cues to attain a recognition decision, while temporal methods

only draw from idiosyncratic facial movements. Sequence-based methods can allow

for efficient face tracking and can improve recognition performance in degraded

conditions wherein portions of the faces are temporarily deformed, occluded or

obscured.10,11,12,13,14 Whereas set-based methods tend to degrade in performance

when presented with facial expression changes, results from Refs. 15, 16 and 17 in-

dicate that a temporally oriented approach can use the ways facial muscles contract

and extend when a person speaks or expresses emotions as biometric characteris-

tics.

This survey covers these approaches along with the most popular face video

databases and unaddressed research directions. The field of face recognition from

video is young relative to that of face recognition from still images, so there is

only one prior survey article that is strictly dedicated to the face recognition from

video literature.18 It contains a review of tracking and detection along with a

broad overview of the video-based face recognition literature. Zhao et al.6 pro-

vide a comprehensive survey on face recognition in general. They decompose the

face recognition from video literature into still image, multimodal and spatiotem-
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poral categories. In addition, the section on video discusses the face tracking and

3D modeling methods that were the state-of-the-art at the time that survey was

written. Zhou et al.4 devote a book chapter to face recognition from video wherein

they present a probabilistic identity characterization framework and a literature

review encompassing a thorough categorization of the literature based on the prop-

erties of videos. Building on these earlier works, this survey includes a broad, deep

and up-to-date review of the research on face recognition from video. This review

incorporates detailed discussions of results; comparisons between techniques and

approaches; notable tie-ins to aspects of human face recognition; and outlines of

potential challenges and research directions that lie ahead for the field.

Specifically, Section 2 of this paper discusses publicly available datasets that

have been used by a number of research groups. Section 3 covers common biometrics

applications and key performance metrics. Next, Section 4 describes the basic face

recognition pipeline and the ways in which faces are located and processed prior to

recognition. Recent work on set- and sequence-based face recognition from video is

covered in Sections 5 and 6, respectively. Finally, Section 7 provides a discussion of

open problems and unaddressed research issues.

2. Video Datasets

A number of research groups have amassed datasets with well-defined variations to

promote progress in the field. These standard datasets allow for the replication of

results along with direct comparisons between methods. The abilities to measure

progress and perform systematic research stem from the widespread use of a com-

mon basis of comparison. Overviews of some of the most notable datasets are given

below.

Goh et al.19 acquired the CMU Face in Action (FIA) database, which contains

640x480 twenty second videos of 214 participants. In the videos, subjects randomly

changed their facial expressions and orientations as they enacted a passport en-

rollment scene. The sequences were acquired at 30 frames per second (FPS) from

three different angles in both indoor and outdoor environments. Many of the par-

ticipants were recorded in three sessions separated by a number of months to allow

for time-lapse experiments.

The CMU Motion of Body (MoBo) database acquired by Gross and Shi consists

of sequences containing subjects walking on a treadmill.20 Each of the subjects was

recorded with 6 color cameras positioned around the treadmill. Each 640x480 se-

quence was recorded at 30 frames per second and lasts for 11 seconds. The database

includes 150 sequences of 25 subjects either walking slowly, quickly, at an incline

or with a ball.

Honda and UCSD acquired two datasets of subjects exhibiting a wide range of

poses. The first dataset was acquired by Lee et al.13 and contains 75 videos from 20

subjects. The second dataset was accumulated by Lee et al.14 as well and contains

30 videos from a separate set of 15 subjects. Each 640x480 video was recorded at 15
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Table 1: Selected Face Video Datasets. Conditions include:

indoor/outdoor (i/o); varying pose (p), illumination (l),

expression (e), and scale (s); motion blur (b); occlusions (c);

walking (w); random actions and/or motion (r);

surveillance quality (v); and multiple people (m).

Dataset Subject Count Video Count
Conditions Resolution Frame Rate
Download Location

CMU FIA19 214 214
i, o, p, l, e,r 640x480 30 FPS
Contact Goh et al.

CMU MoBo20 25 150
i, w 640x480 30 FPS
Contact Gross and Shi

First Honda/UCSD13 20 75
i, p 640x480 15 FPS
http://vision.ucsd.edu/∼leekc/HondaUCSDVideoDatabase/HondaUCSD.html

Second Honda/UCSD14 15 30
i, p 640x480 15 FPS
http://vision.ucsd.edu/∼leekc/HondaUCSDVideoDatabase/HondaUCSD.html

CamFace21 100 1400
i, p, l, r 320x240 10 FPS
Contact Arandjelović and Cipolla

Faces9622 152 152
i, l, s 196x196 0.5 FPS
http://cswww.essex.ac.uk/mv/allfaces/faces96.html

VidTIMIT23 43 43
i, p, e 512x384 Frame set

http://www.itee.uq.edu.au/∼conrad/vidtimit/

ND-Flip-QO24 90 14
i, o, l, e, s, b, c, r, v, m 640x480 30 FPS

http://www.nd.edu/∼cvrl/CVRL/Data Sets.html

YouTube Celebrities25 47 1910
i, o, p, l, e, s, b, w, v, m 180x240, 240x320 25 FPS

http://seqam.rutgers.edu/softdata/facedata/facedata.html

MBGC26 821 3764
i, o, p, l, e, s, c, w, r, v, m 720x480,1440x1280 Not described

http://www.nist.gov/itl/iad/ig/mbgc.cfm

frames per second and lasts for 15 seconds or longer. Both datasets were recorded

indoors which means that illumination variation is not a significant issue.
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Table 2: Selected Works Involving Popular Databases. Each of the datasets listed

below has been used by multiple research groups to evaluate recognition perfor-

mance.

Dataset Approach Works Presenting Recognition

Results Rate

CMU Face in Action 3D Modeling Park et al.27 70%
Liu and Chen28 95.9%

Frame Selection Park et al.29 99%

CMU Motion of Body Manifold Modeling Wang et al.30 96.9%

Frame Selection Hadid and Pietikäinen 31 93.8%
Spatiotemporal Hadid and Pietikäinen32 97.9%

Liu and Chen 33 98.8%

First Honda/UCSD Manifold Modeling Zhou and Chellappa 34 93.3%
Wang et al.30 96.9%
Mian 35 99.6%

Frame Selection Thomas et al.36 99%

Spatiotemporal Aggarwal et al.37 90%
Hadid and Pietikäinen32 96%

The CamFace database contains 67 male and 33 female subjects of different ages

and ethnicities.21 Every subject has fourteen 320x240 videos that were recorded at

10 frames per second. The clips contain different configurations of multiple light

sources. The subjects moved about to create substantial variations in translation,

yaw and pitch. However, expression variation is minimal.

Faces96 is comprised by 196x196 image sequences from 152 individuals.22 The

sequences were recorded indoors and contain significant changes in head scale and

illumination. All sequences were recorded at 0.5 frames per second during the same

day.

The VidTIMIT dataset contains videos of 24 males and 19 females speaking

in an office.23 Subjects rotate their heads in a controlled sequence. A broadcast

quality video camera recorded the videos.

Barr et al.24 collected a crowd video dataset containing 14 crowd videos of 90

subjects, five of whom appear in multiple videos and 85 of whom appear in one

video. The 640x480 videos were recorded with a Flip camcorder in a variety of

indoor and outdoor settings with different illumination characteristics. Subjects

were allowed to change their expressions freely.

The YouTube Celebrities dataset, which was collected by Kim et al.25, consists

of 1910 noisy YouTube videos of 47 actors and politicians. This dataset is challeng-

ing as the majority of the videos are low resolution and highly compressed. Pose,

illumination and expression were also largely uncontrolled.

The Multiple Biometric Grand Challenge (MBGC) database includes one of
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(a) (b)

(c) (d)

Fig. 2: Selected dataset sequences: (a) MBGC, (b) CMU MoBo, (c) First

Honda/UCSD, and (d) YouTube Celebrities.

the largest face video datasets that has been collected to date.26 This dataset was

collected at the University of Texas at Dallas and the University of Notre Dame

and spans 3764 visible spectrum videos and 821 subjects. The video set contains a

wide variety of videos, some of which show subjects at both frontal and off-angle

poses. Other videos display subjects walking, performing activities and conversing

with one another in settings with unconstrained illumination, movement and poses.

In addition, this dataset contains both indoor and outdoor videos.

The datasets mentioned here vary along a number of important dimensions.

The video resolution varies from 196x196 to 1440x1280. Some datasets contain a

relatively small number of subjects, e.g. the Second Honda/UCSD dataset only

contains 15 subjects, while others contain hundreds of individuals, e.g. the MBGC

dataset has 821 people. Most videos only have a single face in the field of view at

any instant, but some datasets contain videos with 10 or more people in view. Sim-

ilarly, some videos capture the movements of the entire body and show individuals

making unpredictable motions, while others focus on the face and display people
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performing a limited set of actions. The backgrounds in a portion the datasets

are fairly uniform, which simplifies face detection and tracking. Conversely, the

backgrounds of other datasets span complex environments with objects that might

appear similar to a human face. Comparing the performance results of algorithms

operating on different datasets is nearly meaningless due to these large variations

along multiple dimensions of difficulty.

3. Applications and Performance Metrics

Research in the area of face recognition from video has primarily focused on its

applications in biometrics. Biometrics entails the use of physical or behavioral char-

acteristics to automatically recognize people. Performing face recognition on videos

enables unobtrusive identification in uncontrolled environments, which is ideal for

surveillance, video-indexing and web content analysis use cases.

Biometric applications generally involve some combination of the identification,

verification and watch list tasks.3 Much of the face recognition from video literature

focuses on identification and verification. In each case, the face recognition system is

provided a gallery or collection of biometric signatures for known individuals. A set

of probes containing the biometric signatures of unknown individuals is presented

for recognition. The system compares probes to the biometric signatures in the

gallery to generate match scores. Alternatively, distances or match probabilities

may be produced. The identification and verification tasks differ in terms of their

objectives.

Identification entails matching the probe set against the gallery. Identification

is a common task in the law enforcement domains in which officials must identify

suspects using large mugshot databases. Every probe has at least one matching

gallery entry called the correct match. For each probe, the face recognition system

sorts the gallery entries by the strength of their match. A probe is assigned a

rank k if the correct match from the gallery has the kth largest match score.3

The cumulative match characteristic curve, a common way to display identification

performance, plots the percent of probes with rank k or higher over a sequence

of k values. The rank-one recognition rate tends to be used to summarize overall

performance. All results reported here are rank-one recognition rates or accuracies

unless otherwise noted.

In the verification task, someone claims that he or she is a particular person.

The recognition system verifies this assertion by matching the probe against the

gallery entry corresponding to the claimed identity. The system accepts the claim

if the match score lies above a predetermined operating threshold, otherwise the

claim is rejected.3 A false accept occurs when the recognition system decides a false

claim is true and a false reject occurs when the system decides a true claim is false.

Moreover, the false accept rate (FAR) is the the percentage of probes a system

falsely accepts even though their claimed identities are incorrect, while the false

reject rate (FRR) is the percentage of probes a system falsely rejects despite the
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Fig. 3: Basic Recognition Scheme. For each video frame, the faces are first located

via a detector or tracker. The located faces are extracted and passed to a matcher,

i.e. a face recognition algorithm, which measures the similarity between the ex-

tracted faces and the faces from a gallery comprised by the sequences of enrolled

subjects.

fact that their claimed identities are correct. The performance trade-offs associated

with using different parameterizations in a verification system are quantified using

both the FRR and the FAR. The receiver operating characteristic (ROC) curve

plots the FRR against the FAR as a function of one or more control parameters,

including the score threshold. The point where the FRR approximately equals the

FAR, termed the equal error rate (EER), is often used to summarize verification

performance. A verification algorithm achieves perfect performance if it reaches a

0.0% FRR at a 0.0% FAR.

4. Face Detection, Tracking and Feature Extraction

Face recognition systems typically progress through a number of stages during video

processing. The first step is to determine which image regions contain a face via a

detection or tracking component. Faces are located by distinguishing facial features
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from those of the background. Next, the face information is extracted and converted

into the form required by the recognition algorithm, and then the face is matched

against the gallery set. Some recognition systems detect or track faces and perform

recognition simultaneously.10,38,11,12,13,14

Detection or tracking is performed to locate faces if their positions in a video

frame are not known prior to analyzing a video. Face detection algorithms treat each

image as an independent observation and thus do not model motion state across

sequences of video frames. Face tracking algorithms, on the other hand, accumulate

both spatial and motion information over subsequences of frames to continuously

find image regions containing previously detected faces. In both approaches, an

algorithm searches for features in the image that indicate the presence of a face.

The difference between detection and tracking lies in the size of the search area.

In Ref. 39, Viola and Jones propose an efficient machine learning approach for

combining a small set of features from a large set to detect faces in images. During

the training stage, a weighted ensemble of weak classifiers is trained to distinguish

faces from other objects, where each weak classifier operates on a particular feature.

A variant of the AdaBoost learning algorithm chooses the weighted combination of

weak classifiers and, hence, the combination of features that offers the best clas-

sification performance on the training set. The features, Haar-like wavelets, can

be computed with a small number of operations by using a novel data structure

called the integral image. The resulting detector operates on overlapping windows

within input images, determining the approximate locations of faces. Viola and

Jones received the esteemed Longuet-Higgins Prize at the 2011 IEEE Conference

on Computer Vision and Pattern Recognition for this work as it has made a fun-

damental impact on the computer vision field at large.40 Consult Refs. 39, 41, 42

and 43 for comprehensive reviews of the work by Viola and Jones as well as other

detection algorithms.

Head pose variations and occlusions can change the appearance of the face,

making the detection task more difficult. Pose invariance can be achieved by incor-

porating a set of pose-specific face detectors into an array at the cost of increased

computation time, while occlusion can be handled with a part-based detector. Al-

ternatively, faces can be located with a tracker, an algorithm which exploits the

temporal continuity inherent in videos to potentially achieve robustness to pose

changes and occlusions. Most trackers use a face detector to find faces initially, but

then use appearance and motion cues in subsequent video frames. Trackers tend to

offer efficiency gains over detectors because they typically do not scan the entirety

of every video frame searching for faces.

Deterministic tracking approaches typically optimize some cost function. For

instance, the mean shift algorithm can be used to reduce a cost function of the

color histogram of a tracked object.44 Xu and Roy-Chowdhury use a bilinear sub-

space consisting of illumination and motion variables and an iterative mean-squared

error reduction scheme to recover the 3D structure, motion and lighting of an

object.45 In contrast, stochastic tracking techniques, such as the Kalman filter used
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by Azarbayejani and Pentland (see Ref. 46) or the more general particle filter em-

ployed by Zhou et al.11,12,38, model a hypothesis or a set of hypotheses about the

kinematic state of an object. Stochastic algorithms are more robust than determin-

istic algorithms in the sense that they can avoid local optima of the cost function.

Conversely, the deterministic approach tends to be more computationally efficient.

Zhou et al.11,12,38, Li et al.10 and Lee et al.13,14 propagate probability densities

over time in schemes that track motion state and perform recognition simultane-

ously. In particular, Zhou et al. and Li et al. employ sequential importance sampling

techniques to estimate the location and in-plane orientation of faces, while Lee et al.

use a Bayesian inference framework to recursively fuse the recognition results from

each video frame. The associated trackers find the region of the next frame with

the shortest distance to the linear subspace representing the face identified in the

current frame. Using the same model for both tracking and recognition can result

in better face alignment. Moreover, computational costs can be further reduced by

representing previously recognized individuals with appearance models.14

Tracking and detection algorithms may only provide a coarse estimation of

where a face is a located. A more precise boundary can be determined through

a process known as localization. A detailed boundary can be obtained with skin

detection techniques, which segment the image region containing the face based on

pixel color values.47

Once located, the image regions containing faces must be extracted and then

transformed into the form required for recognition. Typical transformations nor-

malize the face by aligning key facial points, such as the eye centers, to canonical

positions; warping the face to compensate for out-of-plane rotation; or smoothing

the color or intensity distribution of the pixels in the facial region. Local features,

which characterize the information around a set of points, or holistic features, which

characterize the appearance of the entire face, are then extracted to form face pat-

terns and passed to the recognition algorithm. These features may also be incorpo-

rated into a person-specific model that a tracker can use to locate a particular face

in later frames.

At a coarse level, the recognition algorithm can exploit the large number of

patterns from a sequence in one of two ways. Set-based algorithms discard the

temporal dimension yet take advantage of the multitude of available face patterns.

Sequence-based approaches explicitly incorporate temporal information into recog-

nition decisions, with the objective of increasing computational efficiency, improving

robustness to nuisance factors, or using facial motion cues as biometric character-

istics. Overviews of these approaches are provided in the following sections.

5. Set-Based Approach

The set-based approach poses the face recognition from video problem in terms of

matching with sets of multiple samples. Set-based algorithms fuse information over

the sample set before or after matching individual face images (see Ref. 8 for an in-
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depth discussion of fusion approaches). Information fusion allows a set-based face

recognition algorithm to attain higher recognition accuracy, increased robustness

to nuisance factors or increased efficiency relative to algorithms for face recognition

from still images.

• Fusion before matching - the data or features extracted from each face image

can be aggregated together prior to recognition. The features or pixel values

from an individual image can be unraveled to form a vector; concatenation of

the vectors from different frames can yield a single vector with the information

from an entire set. A major drawback of this näıve representation stems from

its sensitivity to the number of faces and the order in which the vectors are

concatenated together.

In contrast, super-resolution methods attempt to recover high frequency im-

age content from the aggregated frames with the objective of constructing high

resolution images. Some 3D modeling techniques also draw data from multiple

frames, only with the goal of approximating the geometric structure of the face

to achieve pose invariance. In addition, the entire set of faces can be represented

with linear subspaces or nonlinear manifolds,4 constructs with well-defined met-

rics that measure distances between sets or the variations that they share in

common.

• Fusion after matching - Pose, illumination and expression variations complicate

face recognition by effecting how the face appears. Image sets can be sampled via

frame selection algorithms to increase the likelihood that the probe and gallery

sets will have similar compositions with respect to the nuisance factors. Addi-

tionally, some techniques for achieving pose invariance use 3D head models to

synthesize gallery images with similar orientations to the faces in the set of probe

images.

These techniques can be complemented by score, rank or decision level fusion

schemes that integrate information over the probe and gallery images to produce

a single match decision. In score level fusion, the match scores across the probe

frames are combined via summation, multiplication, or by taking the minimum

or maximum score for each gallery entry. The estimated identity corresponds to

the gallery entry with the highest fused score. The rank level fusion method first

ranks gallery entries by their match score in descending order for each frame.

The gallery entry with the lowest sum of ranks over the frame set serves as the

estimated identity. Finally, decision level fusion is performed by assigning a vote

to the gallery entry with the best match score for each face image from the set.

The estimated identity is the gallery entry with the most votes.
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Fig. 4: Super-resolution process. For this example, the spatial information from a

set of adjacent video frames was fused together using the iterative back project

super-resolution algorithm.

This section covers recent literature on set-based face recognition from video,

beginning with the works involving super-resolution and proceeding to those that

incorporate 3D modeling, manifold modeling and frame selection algorithms.

5.1. Super-resolution Methods

Face recognition performance suffers when the facial resolution drops below the

operating range of the recognition algorithm.48,49 Super-resolution techniques can

be applied to recover the high frequency content that was lost due to the limitations

of the imaging system.50 The super-resolution problem can be posed as an inverse

problem where the set of observed low resolution images are used to estimate how

the captured scene appears. That is, the image formation process can be described

with a linear model:

y(t) = M(t)x(t) + u(t), (1)

where t denotes the time of recording for the observed image sequence; vector y(t)

contains the unraveled image content from the observations; the system matrixM(t)

captures the effects of motion, sampling and the point spread function of the sensor;

vector x(t) represents a sequence of views of the original, high resolution scene;

and u(t) models noise. The objective is to obtain an estimate x̂ of how the high

resolution scene appears. This can be accomplished by minimizing a reconstruction

cost function such as the least-squares error,
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Table 3: Selected Super-Resolution Approach Results. Conditions include in-

door/outdoor (i/o), varying pose (p), illumination (l), and random motions (r).

All performance results are given as rank-one recognition rates.

Author, Year Subject Count, Video Count, Resolution Conditions

Face Representation Recognition Method Performance

Gunturk et al.,200349 68, 68, 40x40a i,e
Super-resolution PCA features Nearest neighbor matching 74%

Arandjelović and Cipolla,200753 100, 700, 320x240b i,p,l,r
Pose and downsampling models Probabilistic matching 95.8%c

Al-Azzeh et al.,200854 50, 50, 160x120 Not described
PCA features Nearest neighbor matching 97%

Note:
aThe authors used a gallery set of 68 still images and downsampled the videos to the 40x40 reso-
lution.
bThe authors used the CamFace dataset.
cThis performance was attained on 20x20 face images.

x̂ = argmin
x

∥y −Mx∥22, (2)

which uses the L2-norm as measure of the reconstruction error.

Obtaining a reasonable super-resolution estimate is complicated by the fact

that this cost function is highly sensitive to noise. Additionally, solving the inverse

problem involves inverting the results of applying the system matrix M . Inverting

this matrix poses numerical stability issues and, because M is often singular in

practical applications, there can be an infinite number of solutions that minimize the

cost function. A regularization term can be added to the cost in order to constrain

the space of possible solutions and mitigate noise. It is common to use a penalty term

that enforces a smoothness constraint, which dictates that the content in x should

vary coherently without abrupt changes. This constraint is often incorporated as a

smoothness prior. Consult Refs. 51, 52 and 50 for comprehensive reviews of super-

resolution methods.

Irani and Peleg formalized the iterative back-projection (IBP) algorithm,55 one

of the most popular super-resolution techniques in the field of face recognition

from video. The low resolution images must be initially aligned so that salient

features occupy approximately the same image locations. The high resolution image

is obtained by back projecting the differences between the aligned low resolution

observations and low resolution images that are synthesized by applying blur. This

back projection process is performed iteratively with the goal of minimizing the



April 20, 2012 16:2 FaceRecognitionFromVideoDraft17

16 J. R. Barr, K. W. Bowyer, P. J. Flynn, S. Biswas

reconstruction cost. Zhou and Bhanu applied the IBP super-resolution technique to

recover lost curvature details from low resolution face profile videos.56 In a similar

fashion, Al-Azzeh et al.54 combine this super-resolution scheme with an efficient

frequency based alignment procedure that minimizes the warping error between the

observations with respect to phase shift and image plane orientation. The super-

resolution algorithm drove a principal component analysis (PCA) based matcher

to reach a 97% recognition rate in an experiment involving 50 video clips from 50

subjects, which marks an improvement over the 89% recognition rate achieved by

the same matcher on native resolution images.

Face recognition systems typically perform dimensionality reduction techniques

such as PCA, but in super-resolution schemes like the one employed in Ref. 54, the

high resolution images are obtained from the low resolution frames prior to dimen-

sionality reduction. Computational efficiency gains can be achieved by reversing

the order of these processes. Gunturk et al.49 transfer the super-resolution prob-

lem from the pixel domain to a PCA face space and thus avoid processing image

information that will eventually become superfluous. The transformed problem is

complicated by two primary noise sources: the image sensor and the representa-

tional error incurred by PCA. Face image examples are used to model the statistics

of these noise sources. In this work, the reconstruction algorithm uses Bayesian

estimation to select the super-resolution PCA feature vector that maximizes the a

posteriori probability for the set of observed feature vectors from the video frames.

Substitution of model-based information into the super-resolution algorithm yields

robustness to sensor noise, misalignments and representational error. Tests were

conducted using a portion of the CMU Pose, Illumination, and Expression (PIE)

database comprised by 68 two second video clips of 68 subjects. The gallery set

consisted of neutral expression still images of all of the subjects. The input videos

were downsampled to a resolution of 40 x 40 pixels and passed through the super-

resolution scheme. The proposed algorithm reached a 74% rank-one recognition

rate. For comparison, a traditional PCA based nearest neighbor matcher attained

a 79% recognition rate on the original high resolution videos and a 44% rank-one

recognition rate on the downsampled videos.

Jillela and Ross select the best frames for a specified super-resolution method

instead of imposing model-based constraints.57 Significant motion blur complicates

super-resolution by smoothing corner points that are used for registration. Further,

blurry image regions can cause super-resolution algorithms to generate smooth-

ing artifacts. The frame-selection algorithm in Ref. 57 abates these complications

by discarding blurry frames. Specifically, an inter-frame motion parameter, β, is

derived to measure the average intensity displacement differences between points

that are aligned using the Lucas-Kanade optical flow method. If β lies below a

given threshold for a pair of consecutive frames, there is no significant motion be-

tween these frames and so they are incorporated into the super-resolution process.

Otherwise, the frames could introduce artifacts and thus are discarded.

The super-resolution schemes discussed above generally impose a smoothness
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prior to regularize the ill-posed nature of the inverse problem. Further, these meth-

ods are based on the constraint that the super-resolution images can serve as the

bases for reconstructing the low resolution input images when they are transformed

according to the image formation model. In Ref. 58, Baker and Kanade provide

analytical results showing that the amount of usable information captured by the

reconstruction constraints decreases when the magnification factor increases. More

significantly, they give empirical evidence that a smoothness prior leads to overly

smooth results lacking in high-frequency content at sufficiently large magnification

factors, regardless of the number of low resolution observations. They solve these

issues by learning models of the relationship between low-resolution face images

and their known high-resolution images through a training process. The models are

applied to hallucinate face images from low-resolution images.

Similarly, Arandjelović and Cipolla propose an approach that does not perform

super-resolution explicitly, but instead learns subsampling artifacts on a class-by-

class basis.53 A statistical model of generic face appearance variation is learned

offline to characterize the appearance changes due to illumination. The recognition

algorithm uses this generic model to re-illuminate the probe sequence and fit it

to a probabilistic, person-specific model of downsampling artifacts. In addition to

robustness to illumination and downsampling, a robust match likelihood measure

provides invariance to changes in head pose. These methods are extended to incor-

porate a hierarchy of downsampling models that varies over scale, which increases

recognition accuracy for arbitrary low-resolution probe images over that of a fixed

resolution model. The extended algorithm achieved a recognition rate of 95.8% on

videos from the CamFace dataset that were downsampled so that all of the faces

had a 20 x 20 pixel resolution.

The model-based approaches proposed in Refs. 58 and 53 counter the infor-

mation loss due to blur and downsampling without resorting to overly restrictive

constraints. They do not, however, address the computational costs associated with

aligning images or solving the inverse problem. These costs can make the fruitful

application of super-resolution techniques prohibitively time consuming for real-

time surveillance applications. Moreover, drawing from cues about the way humans

recognize people, psychological studies suggest that high frequency content alone is

not sufficient for humans to accurately recognize faces.59

5.2. 3D Modeling

Although the loss of spatial resolution can drastically affect performance, head pose

can potentially affect face recognition algorithms more than any other complicating

factor.3 The state-of-the-art commercial systems evaluated during the 2008 Multi-

Biometrics Grand Challenge struggled with recognizing faces with off-frontal head

poses.2 The underlying problem is that the correspondence between points on the

facial surface and the pixels of its image changes as the head rotates. As a result,

a specific pixel location in images of faces with different poses will generally cover
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Table 4: Selected 3D Modeling Approach Results. Conditions include in-

door/outdoor (i/o), varying pose (p), illumination (l), expression (e), and random

motions (r). All performance results are given as rank-one recognition rates unless

otherwise noted.

Author, Year Subject Count, Video Count, Resolution Conditions
Face Representation Recognition Method Performance

Park et al.,200727 197, 197, 640x480a i/o,p,l,e
Model recovered via SfM FaceVACS from Cognitec 70%

Liu and Chen,200728 29, 290, 640x480b i/o,p,l,e
Face mosaics Probablistic propagation 95.9%

Xu et al.,200860 57, 57, Not described i,p,l,r

Projected 3D head model Distance fusion 100% max

Note:
aThe authors used a subset of the CMU FIA dataset containing significant pose variations.
bThe videos of 29 subjects from the CMU FIA dataset were split into multiple sequences,
such that each subject had 10 test sequences.

distinct facial features. In other words, the differences in appearance between images

of the same head holding different poses can be greater than those between images

of different people with the same head pose.6

There are three primary methods for overcoming the pose variation problem:

View synthesis techniques handle pose differences by rendering face images or se-

quences with similar poses to the data up for comparison, while model comparison

techniques match 3D face representations directly. Finally, view selection involves

acquiring a gallery set with a diverse set of poses for every subject, thereby ad-

dressing the problem at the time of enrollment. The former two methods, both of

which incorporate 3D face models to varying extents, are discussed in this section,

whereas works on the latter approach are covered in Section 5.4.

View synthesis requires a model of the face which is either obtained during

gallery enrollment with a 3D sensor or algorithmically synthesized from gallery or

probe sequences. Park et al.61 synthesize videos from 3D face models in the gallery

to achieve both pose and illumination invariance. A set of SVMs estimates the head

pose and illumination conditions present in each of the probe frames, after which

the 3D models from the gallery are rotated and lit according to the estimates.

All of the models are then projected onto 2D video frames to generate a set of

synthetic gallery sequences that match the probe video in terms of the modeled

factors. In Ref. 62, Thomas et al. present a pose synthesis process whereby generic

3D face models textured with high resolution gallery images are rendered with a

variety of pose angles. This method increased the recognition rate of the Viisage
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Fig. 5: View synthesis process. In this case, a video synthesis algorithm exploits a

combination of pose estimates and a 3D face model from the gallery to synthesize

a gallery video with approximately the same head poses as the probe video. The

recognition algorithm subsequently matches the probe frames against the corre-

sponding gallery frames. Note: The top row of images was directly extracted from

First Honda/UCSD videos.

IdentityEXPLORER matcher on a challenging dataset with surveillance videos of

57 subjects.

Similarly, Xu et al.60 employ a bilinear model to synthesize gallery sequences

with the same poses and lighting conditions as probe videos using 3D models that

are constructed algorithmically. The bilinear model incorporates facial motion and

structure information along with a set of nine basis images defined using spherical

harmonics. An inverse composition algorithm estimates the illumination and mo-

tion parameters, which in turn are used to synthesize video sequences with 3D face

models from the gallery. This framework was evaluated on a private dataset con-

taining 57 subjects rotating their heads under varied lighting conditions. A 100%

rank one recognition rate was obtained when the average pose angle was 15 degrees

from frontal. The rank one recognition rate degraded to 93% when the average pose

angle increased to 45 degrees from frontal.

Storing 3D models in the gallery offers the advantage that range scanners or

algorithms can be used to capture or generate 3D data offline, regardless of whether

the probe data will be acquired in uncooperative contexts. However, the synthesis

process is computationally burdensome as it entails rendering an image of every

gallery model for each probe video frame, making it difficult to scale this approach

to datasets spanning thousands of individuals. A more efficient way to perform view
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synthesis is to recover the 3D structure of the face from probe sequences and render

the probe faces to match the gallery data in terms of pose and other factors.

Structure from motion (SfM) is a data level fusion technique that exploits the

multitude of views of the same object to recover its shape. SfM algorithms first

associate corresponding image points from different views and then recover their

3D point coordinates by solving the inverse problem of how the observed image was

formed.63 Point tracking techniques solve the correspondence problem by analyzing

the history of point motions.

Park and Jain apply SfM as a means of recovering 3D models from probe face

sequences.27 A generic active appearance model (AAM), which serves as the basis

of a point tracker, is trained on a variety of face views. The AAM points that were

localized in one frame serve as seed points for the next frame. The factorization

method is applied to recover the face shape from the AAM under the assumptions

that the human face is a rigid object and any changes due to facial expression

constitute noise. Although the factorization method yields a pose estimate for each

point in the appearance model, the estimate lacks a third coordinate. Hence, pose

estimates are attained through a gradient descent algorithm that iteratively fits the

constructed 3D face shape to the 2D feature points from the AAM. A subsequent

texture mapping produces a 3D face model that is then rotated to frontal view

and projected onto a 2D image plane. The recognition scheme incorporates the

FaceVACS matcher from Cognitec, which is used to compare the synthesized probe

images to frontal view gallery images. Experiments were performed on videos from

the CMU FIA dataset. Although the 3D model reconstruction algorithm failed on

24 out of the 221 subjects from the data set, the recognition rate on the frontal pose

frames of the remaining individuals was nearly 100%. When using frames containing

non-frontal faces, the proposed 3D modeling method increased the recognition rate

of the FaceVACS matcher from 30% to about 70%.

Although this result suggests that extracting 3D models from the probe images

can partially mitigate the pose problem, it also indicates that the 3D shape recovery

problem is still open in the domain of video-based face analysis. In Ref. 4, Zhou

and Chellappa present three complications that arise from the application of SfM

methods to 3D face modeling:

1. the perspective camera model is not well-posed;

2. the shape of the face is not constant due to facial expressions, but SfM works

best on rigid objects;

3. the SfM algorithm usually begins with a sparse set of points provided by a point

tracking algorithm, and thus must use interpolation to produce a dense set from

points that were potentially tracked poorly.

These challenges have played a role in the development of alternative methods

to recover the geometric attributes of the face that do not resort to synthesis-driven

image matching. Instead, these techniques model probe and gallery sequences alike

and avoid the complications associated with SfM via disparate geometric repre-
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sentations. For example, Krüger et al.64 combine Bayesian probability propagation

with appearance-based 3D models to perform tracking and recognition. The 3D

models are constructed with eigen light-fields, a 3D representation that allows the

recognition and tracking algorithm to handle out-of-plane rotation along with affine

transformations in the image plane.

Liu and Chen model facial appearance and geometry with face mosaics.28 A

3D ellipsoid upon which face images are back projected approximates the head; a

texture map is formed subsequent to back projection. The texture map is decom-

posed into patches that can move locally so that the same feature points in different

images, e.g. the corners of the mouth, can occupy the same patch location. Corre-

sponding patches from the training images of a subject are used to learn an array of

patch-specific PCA models that characterize face appearance. In addition, a PCA

model of the deviations learned from patch movements characterizes face shape.

The residues between corresponding patches in a testing and training model pair

are fed into a probabilistic distance model. The similarity score is given by the

average of the probabilities over all patches. Finally, the CONDENSATION-based

framework proposed by Zhou et al.38 is used to combine the face tracking and recog-

nition processes. This face mosaicing method achieved a 95.9% recognition rate on

a 29-subject subset of the CMU FIA database.

The 3D modeling approaches discussed above compensate for pose and, in some

cases, illumination variations under the assumptions that the pose and illumina-

tion estimations and the image registration processes that occur after synthesis are

accurate. As Chellappa et al. discuss in Ref. 65, accurate registration is critical to

handling pose variation. In one instance, the rank-one recognition rate of the view

synthesis approach proposed by Xu et al.60 degraded from 100% to 93% when the

average pose angle increased from 0 to 45 degrees as a result of inaccuracies in the

pose and illumination estimates and registration errors. Additional complications

can arise for modeling methods as approximations must be made while forming

the models. In particular, strategies that model both probe and gallery sequences

necessitate two approximations, one for the probe model and one for the gallery

model. This scheme allows errors to occur on both sides of the recognition task.

Finally, the density of the point sets associated with shape estimation decreases

when high frequency image content isn’t available. Low resolution videos can re-

duce the effectiveness of model based techniques to the point where modeling is

not possible. The model based methods proposed by Lie and Chen in Ref. 28 and

Krüger et al. in Ref. 64 increase the likelihood of attaining a result by incorpo-

rating spatiotemporal techniques, which integrate evidence over time. Arandjelović

and Cipolla model head pose and the image sampling process alike in order to

compensate for a lack of high frequency content.53
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5.3. Manifold Modeling

The super-resolution and 3D model based methods exploit the multitude of obser-

vations afforded by videos through direct means of modeling the image formation

process. In contrast, the manifold methods fuse the image data to characterize the

space of faces without directly accounting for the image formation process. Manifold

models compactly characterize the relationships between faces in general.

The face manifold is comprised by the collection of possible face images or fea-

ture patterns within some space.66 The appearance of the face is a function of its

configuration, i.e. its pose, expression, scale and so forth. The face manifold Xi can

be expressed as

Xi = {c(xi) : c ∈ C}, (3)

where C denotes the set of possible face configurations and c(xi) represents a face

image of individual i with configuration c. The union of all person-specific face man-

ifolds forms the manifold of all faces, X. In general, both Xi and X are nonlinear;

have a lower dimensionality than the space containing the input data; and can be

approximated by a collection of linear subspaces.30

Early attempts to characterize the face manifold used PCA to compactly rep-

resent the set of faces as a linear subspace. In Ref. 67, Yamaguchi et al. present

the mutual subspace method (MSM). The MSM forms linear subspaces from entire

face sequences via PCA. The associated similarity metric measures the smallest

principal angle between two subspaces, i.e. the minimum angle between the prin-

cipal component vectors in each subspace. The cosine of this angle indicates the

similarity of the primary mode of variation that is shared by both subspaces.30

Experiments were conducted on a private 101 person database with training and

testing subsets. MSM outperformed a single image based approach by reaching an

equal error rate of about 5%.

Arandjelović and Cipolla apply the MSM in a framework that weights the match

score contributions of subspaces built from intensity features and subspaces built

from illumination invariant feature representations, such as self-quotient images.71

First, the similarity score between a pair of subspaces built from two intensity video

sequences is computed and normalized. The similarity score for the corresponding

subspaces from a specified quasi-illumination invariant feature space is computed

and normalized next. The final similarity measure is given by the weighted average

of these scores. The weighting scheme provides robustness to lighting and shadow

variations by using quasi-illumination invariant features when the illumination con-

ditions of a face sequence pair differ drastically. The features derived from intensity

images receive more weight when the illumination distributions are similar, as the

quasi-illumination invariant representations can introduce errors and artifacts. On

a 60 person subset of a large video database comprised by 323 subjects and 1474

videos spanning the CamFace, Faces96 and other databases, a recognition rate of
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Table 5: Selected Manifold Modeling Approach Results. Conditions include in-

door/outdoor (i/o); varying pose (p), illumination (l), and expression (e); walk-

ing (w); and random motions (r). All performance results are given as rank-one

recognition rates unless otherwise noted.

Author, Year Subject Count, Video Count, Resolution Conditions

Face Representation Recognition Method Performance

Yamaguchi et al.,199867 101, 101, 180x101 faces i,p,e
PCA subspace MSM 5% EER

Shakhnarovich et al.,200268 29, 29, 22x22 faces p
Normal distributions Symmetric KL divergence 100%

Fan and Yeung,200669 40, 80, Not Described p,l,e
Isomap affinity matrix HAC to obtain personal subspaces 95.6%

Zhou and Chellappa,200634 20, 75, 640x480a i,p
Probability distributions PDF distance measures 93.3%

Arandjelović and Cipolla,200670 100, 200, Not described i,p,r

Normal distributions Resistor-average distance 98%

Wang et al.,200830 20, 75, 640x480a i,p
Appearance manifolds Manifold-manifold distance 96.9%

- 25, 150, 640x480b i,w
- - 93.6%

Arandjelović and Cipolla,200971 323, 1474, 160x120-320x240c p,l,e,r

Quasi-illumination invariant features Constrained MSM 97%d

Lina et al.,200972 20, 60, Not described p,e
View-dependent covariance matrices Mahalanobis distance 98% max

Hadid and Pietikäinen,200966 43, 43, 512x384e i,p,e
LLE manifold Manifold distance 99.8%

Note:
aExperiments were performed on the First Honda/UCSD dataset.
bThe authors performed experiments on the CMU MoBo dataset.
cThis dataset was comprised by the CamFace, Faces96 and other databases.
dThis result was obtained on a 60 subject subset of the dataset.
eThe authors used the VidTIMIT database.

97% was achieved with constrained MSM (CMSM) and a self-quotient image filter.

This result indicates that the MSM provides flexibility with respect to the represen-

tation of the input data. Moreover, the associated similarity functions are simple

and computationally efficient.

Methods that use a single linear subspace to characterize the observations from
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Fig. 6: Manifold to Manifold Distance Computation. In this example, the distance

d between manifolds Xi and Xj of identities i and j is measured as the minimal

distance between points in pairs spanning both manifolds.

an entire sequence, however, cannot accurately account for nonlinear appearance

variations, such as those caused by multiple light sources.66 The nonlinear struc-

ture of the face manifold can be approximated with a set of linear subspaces as the

local linearity property holds everywhere on a globally nonlinear manifold.73 Wang

et al.30 model the manifold with a collection of local linear subspaces called max-

imal linear patches (MLPs) and compute manifold distances by integrating over

the distances between MLPs. Rather than clustering a particular set of images to

form the subsets from which to construct the local linear subspaces, which requires

that the number of clusters be specified a priori, the authors propose a one-shot

clustering method that incrementally constructs each new MLP from a seed point

until the linearity constraint is broken. In this way, the manifold modeling algo-

rithm determines the number of local models adaptively. The distance metric for a

pair of MLPs measures dissimilarity in terms of modes of variation, as quantified

by the mutual subspace angle, and the distance between constituent data points,

as approximated by the distance between exemplars. The manifold-manifold com-

parison method reached 96.9% recognition accuracy on a subset of 59 videos from

the first Honda/UCSD dataset and 93.6% recognition accuracy on the CMU MoBo

dataset.

Lina et al.72 propose a similar modeling method. Their scheme embeds view-

dependent covariance matrices in each manifold Xi and applies interpolation to

approximate unseen poses. The embedding process begins by building a global

eigenspace with PCA to reduce the dimensionality of the facial features from all

individuals and for all pose angles. Then, for each training pose and individual, a
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mean vector and covariance matrix is calculated. Synthetic transformations, includ-

ing geometric warping and other noise producing procedures, yield a large enough

sample set to obtain reliable estimates of these statistics. An additional manifold

interpolation step facilitates the calculation of the covariance matrices and mean

vectors for poses that lie outside the range of the training data. Manifold match-

ing is performed by measuring the Mahalanobis distances between gallery manifold

sections and probe images with like poses. A supervised version of the manifold

learning algorithm reached 98% accuracy when trained and tested on different sub-

sets of a small, private database with 60 videos and 20 subjects.

Fan and Yeung perform hierarchical agglomerative clustering using the geodesic

distances between face points lying on the manifold.69 Each cluster is represented

by an intrapersonal and an extrapersonal subspace. The intrapersonal subspace ex-

presses the variation within a cluster, whereas the extrapersonal subspace expresses

the variation between a cluster’s images and the exemplars of nearby clusters. The

distance between a probe face image and a gallery cluster is measured as the angle

between the projections of the image onto the intrapersonal and extrapersonal sub-

spaces. A 95.6% average recognition rate was obtained on the evaluation dataset

used in their earlier work (see the discussion on Ref. 74 in Section 5.4 for details

on the dataset).

Hadid and Pietikäinen combine manifold learning with a novel manifold distance

measure to match sequences against sequences.66 Locally linear embedding (LLE)

is executed independently on each subject-specific training video, with the objective

of recovering the low-dimensional face manifold Xi from the high-dimensional face

image space. A test sequence is projected into the embedding space of each training

manifold during recognition, which yields a collection of test manifolds. The training

manifold that lies closest to its corresponding test manifold represents the best

match. Experiments conducted on the VidTIMIT dataset compared this approach

to still-image recognition methods based on PCA, LDA and local binary patterns

(LBP) as well as two spatiotemporal techniques that incorporated hidden Markov

models (HMM) and auto-regressive and moving average (ARMA) models. Face

images were deliberately extracted from each video using the eye positions detected

in the first frame so that the faces were poorly aligned. The proposed method

handled this complication successfully and achieved a 99.8% recognition rate. For

comparison, the PCA, LDA, LBP, HMM and ARMA techniques attained respective

recognition rates of 94.2%, 94.0%, 97.6%, 92.9% and 95.8%.

The manifold representation can be exploited to attain facial appearance proba-

bility distributions. Practically speaking, the anatomical structure of the neck limits

head motion, which makes some head poses more likely than others. The images

from a sequence can thus be treated as independent samples drawn from some face

appearance distribution. The distribution representation allows for a probabilistic

treatment of noise and outliers, while enabling the use of probability density func-

tion (PDF) distance metrics.4 Specifically, this representation treats a face image x

for subject i as a sample drawn from the probability density piF (x).
70 Let fi denote
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a mapping function which embeds faces in the image space and assume that noise

drawn from a distribution pn perturbs the image formation process. The probability

of observing an image X can thus be expressed as:

pi(X) =

∫
piF (x) ∗ pn(fi(x)−X)dx. (4)

Shakhnarovich et al.68 employ a multivariate normal density to represent face

appearances and the Kullback-Leibler (KL) divergence to measure density similar-

ity. In this way, the Kullback-Leibler (KL) divergence is used to express the overall

distance between face manifolds drawn from different image sets. The KL divergence

measures how well a PDF q(x) accounts for information in the set represented by

another PDF, p(x). It is given by:

DKL(p||q) =
∫

p(x)lg
p(x)

q(x)
dx. (5)

The performance of the proposed approach was evaluated on a small, private 29-

subject dataset containing a single video for each individual. One portion of each

sequence was used for training and the other was used for testing. Perfect recogni-

tion accuracy was achieved, albeit on strongly correlated training and test sets.

One issue with modeling appearance with a Gaussian distribution is that the

model is easily violated by variations due to pose and illumination. Much like

Shakhnarovich et al.68, Arandjelović and Cipolla represent face video sequences

as sets of independently and identically distributed samples drawn from a PDF

and use the KL divergence as a distance metric.70 They employ the KL divergence

as the basis of the symmetric Resistor-Average distance (RAD) metric given below.

DRAD(p, q) = (DKL(p||q)−1 +DKL(q||p)−1)−1 (6)

No closed form expression for the DKL exists for the general case of estimating the

distance between two nonlinear face manifolds, but an analytical expression is pos-

sible for normal distributions. Hence, a nonlinear projection of face data via kernel

principal component analysis (Kernel PCA) is performed to guarantee the normal-

ity of q(x) and p(x). This operation unfolds the face manifolds in the embedding

image space, making efficient computation of DKL possible and more numerically

stable. Robustness to outliers is achieved via the RANSAC algorithm. The proposed

approach attained a 98% recognition rate on a dataset containing 100 subjects and

200 videos, while an MSM based algorithm only reached 89%.

In a similar framework that represents face image sets as sample collections

drawn from a probability distribution, Zhou and Chellappa apply a kernel function

that computes the inner product of vector pairs that are mapped from the face
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space into a high-dimensional feature space via a nonlinear mapping.34 The ker-

nel function thereby preserves the nonlinearity inherent to the face data. Explicit

computation of the mapping is avoided by applying the well-known kernel trick.

Further, the nonlinear model is exploited to analytically derive probabilistic dis-

tance measures such as the KL divergence that account for higher order statistical

properties of the samples. A combination of these techniques and the bag of pixels

image representation achieved a 93.3% recognition rate on the First Honda/UCSD

data set.

Turaga et al.75 present distance metrics for the Grassmann and Stiefel mani-

folds, upon which video based face data naturally lies. Additionally, Turaga et al.

discuss parametric and non-parametric manifold density functions that character-

ize their geometric structure. They demonstrate that the Procustes distance metric

provides computational efficiency, and that non-parametric kernel methods and the

Matrix Langevin and Matrix Bingham distributions can be used to approximate

class conditional probability densities.

The manifold and probability density representations can lead to recognition

failure if the collection of observations is not a sufficient sampling. Hence, formu-

lating the face recognition problem in terms of manifolds or PDFs can preclude the

use of short video sequences captured in a wide variety of viewing conditions. Prob-

ability density based representations also incur computational complications: The

associated distance measures on general distributions may not be numerically stable

and empirical methods for characterizing them are computationally intensive.70

5.4. Frame Selection

The data and feature level fusion methods presented in the prior sections can incur

steep computational costs as they generally include all observations regardless of

the amount of information they contribute to the recognition result. Another way

to exploit the observations available in videos is to select a set of frames that

should yield the best recognition accuracy with a given classifier. Frame selection

approaches can be used to filter out low quality face images or images that were

captured under different conditions than the gallery set. Alternatively, diversity

oriented selection techniques can be used to build face image sets that span a wide

variety of conditions, which increases the likelihood that the selected probe images

will be similar to the gallery images with respect to the nuisance variables.

Quality based approaches generally use statistical approaches to find outliers

or draw from heuristics about the pose, lighting, resolution and other character-

istics of a useful face image. For example, Berrani and Garcia apply the robust

PCA (RobPCA) algorithm proposed by Hubert et al.78 to detect outliers in video

sequences that could cause recognition errors.79 Potential outliers include face im-

ages with disruptive illumination effects, off-frontal head poses, poor alignment or

any other property that causes them to deviate from a PCA based face model.

Such appearance changing influences can force the traditional eigenfaces approach
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Table 6: Selected Frame Selection Approach Results. Conditions include in-

door/outdoor (i/o); varying pose (p), illumination (l), expression (e), and scale

(s); occlusions (c); walking (w); random motions (r); and surveillance quality (v).

All performance results are given as rank-one recognition rates unless otherwise

noted.

Author, Year Subject Count, Video Count, Resolution Conditions
Face Representation Recognition Method Performance

Hadid and Pietikäinen,200431 24, 96, 640x480a l,r

Exemplars from LLE space Nearest neighbor matching 93.8%

Fan and Yeung,200674 40, 80, Not Described p,l,e
Isomap affinity matrix HAC 96.5%

Zhang and Martinez,200676 50, 100, Not describedb i,p,e,c
Region-based PCA,ICA,LDA features Probabilistic fusion over regions 99% max

Park et al.,200729 221, Not described, 640x480c i,p,e
Face images and PCA features PCA and cross-correlation matchers 99% max

Thomas et al.,200736 20, 75, 640x480d i,p

Not described FaceIt SDK 99%

Stallkamp et al.,200777 41, 2292, Not Described i,e,l,s,c,w,r,v
DCT coefficients kNN or GMM 92.5% max

Mian,200835 20, 75, 640x480d i,p
SIFT descriptors Hierarchical clustering 99.5%

Note:
aThe authors performed expirements on the CMU MoBo dataset.
bThe training set contained three neutral expression still images for each subject. The test set contained
two clips for each subject, where the first clip showed the subject randomly talking from a nearly frontal
perspective and the second clip captured the subject rotating his or her head.
cA subset of indoor videos with restricted illumination variations from the CMU FIA dataset was used

for experiments.
dThe authors used the First Honda/UCSD dataset.

to fit the most informative dimensions to variations caused by noise. The RobPCA

algorithm provides robustness to outliers by finding groups of training patterns

that occupy compact spaces and by maximizing a robust measure of spread while

selecting eigenbases. The proposed algorithm matches the faces that remain after

it discards patterns that lie far from the face space.

While the frame selection technique discussed above discards poor quality face

images, weighted selection schemes quantify the contribution of each face in a set

to the recognition score and assign poor quality face images lower weights. This

strategy allows for the inclusion of more information into recognition scores and
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decisions. Zhang and Martinez propose a framework that achieves robustness to

localization errors, partial occlusion, expression changes and pose variations using

a combination of weighting techniques.76 For each training image, the feature space

subset that represents all images under all possible localization errors is estimated

with a mixture of Gaussians. Faces are divided into subregions characterized by

linear subspaces and Gaussian mixtures, which gives robustness to occlusions and

localization errors. The probability of a probe face image matching a gallery class

is expressed in terms of the class conditional probabilities of all corresponding

subregions in a pair of images; the contributions of the subregions and the entire

face are weighed. Experiments were conducted on a private 50 subject database

comprised by a gallery set with three neutral expression images for each subject

and two 40 frame probe videos of every individual. When using LDA to obtain the

subregion feature spaces, the proposed approach attained a maximum recognition

rate of 99%.

Stallkamp et al.77 weight the contribution of probe video frames to match prob-

abilities using three techniques. The distance-to-model (DTM) method reduces the

influence of probe frames that are significantly different from the closest matching

gallery image, i.e. the frames that are most likely to cause a misidentification. The

second method, distance-to-second closest (DT2ND), addresses situations in which

a probe frame could potentially correspond to multiple identities. The third weight-

ing scheme fuses the weights obtained by DT2ND and DTM with the product rule.

The weighted frame scores from a particular video are combined using score sum

fusion in all weighting schemes. The DTM, DT2ND and combined weighting ap-

proaches reached 92.0%, 91.3% and 92.5% respective recognition rates using a kNN

matcher on a surveillance database.

Conversely, temporal continuity causes adjacent video frames to contain highly

redundant information. Selecting all of the frames in an interval decreases execu-

tion efficiency as more comparisons must be made. Consecutive frames also may

not bolster recognition improvements because they contain highly correlated in-

formation. Some recognition schemes thus incorporate diversity oriented selection

algorithms that enforce the construction of sample sets that span as many varia-

tions as possible. This approach can potentially yield a compact characterization

that includes the significant intra-class variations. Diversity can be achieved with

clustering methods, during acquisition or by choosing images with a wide range of

qualities according to some metric.

Clustering algorithms can partition a set of images into a collection of groups,

where each group contains images with a particular mode of variation.31 The exem-

plars that best represent a particular set of appearance variations can subsequently

be selected from each cluster as representatives of how someone appears. The mean

feature vector for a cluster or a feature vector located near the cluster center can

serve as an exemplar. Exemplar-based recognition is popular because it can drasti-

cally reduce the number of face comparisons, yet it preservers a significant amount

of identifying information.
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Fan and Yeung locate the most suitable exemplars from a sample of global

face features with an unsupervised non-parametric technique.74 They employ the

Isomap nonlinear dimensionality reduction algorithm to produce a face point affin-

ity matrix for later hierarchical agglomerative clustering. Isomap accounts for the

relationships between face images by computing the geodesic distances separating

them along the face manifold.80 The cluster centers determined after hierarchical

agglomerative clustering are treated as exemplars, while the recognition decision

is made using majority vote fusion to combine matching results. Performance was

measured on a small, private 40-subject video database containing variations in pose

and illumination. These methods achieved a maximum recognition rate of 96.5%.

Hadid and Pietikäinen employ the Locally Linear Embedding (LLE) algorithm

to construct global feature representations of reduced dimensionality.31 Given a set

of face appearance vectors, the unsupervised LLE algorithm maps the vectors onto

a neighbor-preserving embedding space of lower dimensionality. K-means cluster-

ing is subsequently applied in the embedding space. The centers of the obtained

clusters are used to characterize the intra-class variations due to changes in pose,

illumination and expression. Matching consists of comparing cropped face images

from probe sequences to exemplars from the gallery and performing probabilistic

voting to fuse the decisions from multiple frames. On the CMU MoBo database,

the combination of LLE with k-means clustering achieved marginally better per-

formance than that offered by a self-organizing map or k-means clustering in an

Isomap embedding space. The proposed approach reached a 93.8% recognition rate.

An algorithm proposed by Mian chooses a representative set of local SIFT fea-

tures from multiple face images with a hierarchical clustering technique and a voting

scheme.35 The SIFT features enable robustness to occlusion and rotation. Face pair

similarity is measured in terms of the angle between SIFT vectors and the num-

ber of matching SIFT vectors. A weighted average of these measures provides the

similarity scores on which the hierarchical clustering algorithm operates. The au-

thor chooses a particular partitioning by specifying the number of clusters to form.

Each of the clusters contains faces with related appearances, i.e. similar expressions

and poses, so that multiple clusters correspond to the same face. A voting process

performed during face matching is used to select a representative set of features.

A maximum recognition rate of 99.6% was achieved on the First UCSD/Honda

dataset with this scheme.

The diversity constraint can also be addressed at enrollment time. Park et al.29

focus on pose variations in a view selection approach by deliberately composing

a gallery with a large range of head poses. They also account for motion blur es-

timates via an analysis of the high frequency components of the discrete cosine

transformation of probe video frames. This information enables a view synthesis al-

gorithm to generate gallery videos that match the pose and blur conditions observed

in probe sequences. Additional robustness to matcher specific errors is achieved by

fusing the results from three matchers: the FaceVACS face recognition application

from Cognitec as well as PCA and cross-correlation based matchers produce the
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frame set match scores.81 The individual frame scores are then fused at the score

level to attain a single score over all matchers and video frames. Experiments were

conducted on a subset of the CMU Face-In-Action (FIA) database that contained

significant pose variation, but little illumination variation, as the primary focus was

to address pose and blur. The system reached a 99% rank-one recognition rate.

Recognition schemes can employ algorithms for selecting diverse sets of high

quality images from video sequences. Thomas et al.36 propose strategies for select-

ing diverse and high quality image sets in a principled fashion. The first strategy,

N highest faceness (NHF), chooses the highest quality frames from a face image se-

quence based on a quality measure called “faceness” produced by the L-1 Identity

Solutions FaceIt face recognition software. The N evenly spaced from M highest

faceness (NEHF) strategy sorts the images from a sequence by “faceness” and se-

lects M evenly spaced faces. The last two strategies, largest average distance (LAD)

and LAD highest faceness (LADHF), explicitly make diverse selections by choosing

faces separated by the largest distances within a PCA feature space. LADHF adds

a step wherein face sequence images are ordered by quality prior to the diversity

oriented selection. A 99.0% recognition rate was reached on the First Honda/UCSD

dataset with the NHF approach.

Xiong and Jaynes present procedures for selecting high-quality mug shot images

that are suitable for simple, still image based recognition techniques.82 They focus

on surveillance videos containing challenging variations in pose, illumination and

expression. As a result, the proposed system accepts still face images provided that

they meet certain intrinsic and extrinsic quality constraints. The intrinsic quality

of a face image is given by a function of its orientation, aspect ratio and resolution.

The extrinsic quality measure depends on clustering and rewards new face images

that increase the density of some mode in the data or shift the mean of the convex

hull surrounding a mode away from other classes. The normalized, weighted sum

of these measures feeds the decision process that determines whether to add face

images to the database. Experiments reported on 96 hours worth of surveillance

footage demonstrate the ability of the proposed selection algorithm to support

nearest-neighbor based classifier in achieving high accuracy on a challenging data

set.

Quality oriented frame selection algorithms can suffer when the assumption that

high quality frames exist is violated, which may happen often in surveillance videos

and movies for sensitive recognition algorithms. Unlike 3D modeling techniques,

these methods cannot generalize over pose and illumination variations that are not

present in the gallery or training set, as using a subset of frames equates to drawing

samples from a small region of the face space and ignoring potentially useful data

from other regions.
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6. Sequence-Based Approach

While set-based approaches exploit the potentially large samplings that videos can

contain, sequence-based approaches also incorporate the information about their

ordering during recognition. Temporal dynamics can be exploited to characterize

how facial appearance and motions vary together; improve registration accuracy

through a unified tracking and recognition scheme; or represent idiosyncratic fea-

tures of a person. Unlike in the context of face recognition from still images, video

streams can enable a sequence-based algorithm to correctly recognize individuals

in contexts that do not give strong support for a decision, such as when the face is

intermittently blocked from view.

Temporal continuity plays an important role in human facial and object recog-

nition, as shown by recent psychophysical and neurological studies.5,83,84 Humans

incorporate both static and behavioral facial information during recognition, and,

while static information tends to play a stronger role, dynamics aid recognition un-

der poor viewing conditions. In contexts involving the recognition of familiar faces,

humans appear to draw heavily from temporal cues when image quality degrades.

In a study conducted by Knappmeyer et al.85, participants initially learned to dis-

criminate between two synthetic face models animated with distinct idiosyncratic

facial movements before being presented with intermediate morphs between the

heads. The identity decisions for the morphed heads were biased by their facial

movements. In addition, Vaina et al.84 studied fMRI scans that suggest the recog-

nition of biological motion stimuli may activate brain regions involved in both form

and motion recognition. This psychophysical evidence bolsters the idea that auto-

matic face recognition systems should exploit the available temporal information,

especially in circumstances involving low resolution videos.

Sequence-based methods draw from these observations insofar as they account

for temporal dynamics during recognition. The most popular class, spatiotemporal

techniques, combines spatial and temporal cues, ideally improving recognition ac-

curacy in uncontrolled contexts and potentially increasing the efficiency of tracking

and recognition. Temporal methods have begun to arise more recently. This group

of techniques employs facial movements as identifying biometric characteristics.

6.1. Spatiotemporal Recognition

Spatiotemporal recognition schemes model dynamics to estimate identity under

the assumptions that idiosyncratic facial motions are accompanied by appearance

variations, and, for some algorithms, that identifying movements will be salient.

Research on face tracking and face recognition from video has traditionally been

performed separately until recent years. Consequently, spatiotemporal recognition

methods can be roughly divided into two categories: those that split tracking and

recognition into separate tasks performed serially and those that unify tracking and

recognition.
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Table 7: Selected Split Tracking and Recognition Approach Results. Conditions

include indoor/outdoor (i/o), varying pose (p), expression (e), and walking (w). All

performance results are given as rank-one recognition rates unless otherwise noted.

Author, Year Subject Count, Video Count, Resolution Conditions

Face Representation Recognition Method Performance

Liu and Chen,200333 24, 500, 640x480a i,w
PCA vectors HMMs trained online 98.8%

Aggarwal et al.,200437 50, 75, 640x480b i,p
ARMA model Subspace angle based 90.0%

Mitra et al.,200686 55, 165, Not described e
Frequency domain asymmetry cues HMMs 96.8%

Hadid and Pietikäinen,200932 24, 96, 640x480c i,w

Extended volume LBP histograms Chi-square distance 97.9%
- 50, 75, 640x480b i,p
- - 96.0%

Note:
aThe authors drew from the CMU MoBo dataset to randomly synthesize 500 sequences.
bThe authors experimented on the First Honda/UCSD dataset.
cExperiments were performed on the original CMU MoBo dataset.

6.1.1. Split Tracking and Recognition

Performing tracking and recognition with independent algorithms offers the ad-

vantage of flexibility: the tracker is not constrained by the recognition component

and vice versa. The most common spatiotemporal approach is to employ a Hidden

Markov Model (HMM) for recognition along with a suitable face tracking algorithm.

An HMM is comprised by an unobservable Markov chain with a finite number of

states connected by transition edges. Markov chains model random processes that

proceed through state sequences, such that each state transition is based on the cur-

rent state and not on the past states. In this context, unobservable means that the

state of the model is not directly visible, but outputs and parameters are observable.

The states each have an observation probability distribution over the outputs of a

modeled system, e.g. a face sequence. An HMM can be defined as Λ = (A,B, π),

where A denotes the state transition probability matrix, B expresses the observa-

tion probability density functions and π represents the initial state distribution. In

face recognition from video applications, a collection of HMMs {Λi} are trained to

represent the gallery set. Each Λi is trained on the face sequence(s) of a particular

individual and thus learns the statistics and dynamics of that person. The identity

of a probe sequence observation O is given by the HMM Λk for which
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P (O|Λk) = max
i

P (O|Λi). (7)

In Ref. 33, Liu and Cheng introduce adaptive HMMs to the face recognition from

video domain. They apply PCA as a means of dimensionality reduction, i.e. the

HMMs output sequences of PCA feature vectors. A refinement to the basic HMM

learning procedure, wherein the HMM for a recently recognized person learns new

sequence information online, provides increased recognition accuracy over time.

This adaptive model reached 98.8% recognition accuracy on 500 clips constructed

from random subsequences in the CMU MoBo videos. Mitra et al.86 combine a

feature representation based on face asymmetry cues from the frequency domain

with an HMM set. Their video training and testing data captures the activities of

55 persons displaying three emotions in different clips. An average error rate of 3.3%

over 20 trials was achieved. Tistarelli et al.87 went on to employ a two-dimensional

generalization of the HMM that incorporates appearance based spatial HMMs,

which model the emission distributions of the hidden states in a top-level HMM

that characterizes temporal dynamics. To index videos, Eickeler et al.88 apply K-

means clustering to group face feature vectors and a collection of two-dimensional

HMMs to represent each cluster.

Neural networks provide an alternative means to model state changes while

estimating identity over time. For example, Gorodnichy presents an auto-associative

neural network framework that accumulates evidence over a series of video frames

in Ref. 89. The recognition process begins by passing a pre-processed image into

the input layer and determining which output neuron fires subsequent to reaching

a stable state. Gorodnichy notes that the neural network layers can incorporate

feedback in order to account for temporal dynamics. Barry and Granger employ

an evidence accumulator to fuse the results from a fuzzy ARTMAP neural network

that performs recognition and an array of Kalman filters that track motion.90 The

individual that most likely resides at a particular position at a specific time is

determined by accumulation variables that are updated with the neural network’s

responses at each time step.

The primary disadvantage of employing HMMs or neural networks is that they

implicitly characterize the geometric properties of a moving face, making it difficult

to obtain direct estimates of face pose and motion state without special training or

separate mechanisms such as the Kalman filter array used in Ref. 90. Aggarwal et

al.37 avoid these issues by modeling the face sequence as a linear dynamical system

with an autoregressive moving average (ARMA) model. Specifically, the ARMA

model is used to characterize changes in appearance due to both pose variation and

facial dynamics:

x(t+ 1) = A ∗ x(t) + v(t), andy(t) = C ∗ x(t) + w(t), (8)

where t denotes time, x(t) represents a state vector with components describing



April 20, 2012 16:2 FaceRecognitionFromVideoDraft17

Face Recognition from Video: A Review 35

orientation and position, y(t) expresses the observed image, A and C denote ma-

trices that act as linear mappings, and v(t) and w(t) are realizations drawn from

separate Gaussian distributions that model noise processes. The model parameters

for the noise distributions and the A and C matrices can be efficiently estimated

via a closed-form derivation. Once the models are estimated for probe and gallery

video sequences alike, ARMA model comparisons are performed with distance met-

rics based on their subspace angles. 90% recognition accuracy was reached on the

First Honda/UCSD dataset.

The HMM (see Refs. 33, 86, 87 and 88), neural network (see Refs. 90 and 89)

and ARMA model (see Ref. 37) methods discussed above incorporate global facial

features over the sequence. But local information may be equally important to face

recognition. It has been found that humans can recognize faces even when a sig-

nificant number of features cannot be seen. As discussed in Ref. 59 and studied

by Sadr et al.91, Davies et al.92 and Fraser et al.93, a single feature such as the

eyes or eyebrows is sufficient for people to recognize familiar faces. Similarly, auto-

matic local feature based schemes compensate for pose differences by allowing the

geometric configuration between features to be flexible.94 Robustness to alignment

variations can also be achieved via a local approach. Moreover, the spatiotemporal

methods discussed above give all dynamic features equal weight and thus idiosyn-

cratic spatiotemporal features do not contribute more to recognition decisions than

other facial movements.

Hadid and Pietikäinen increase the influence of identifying spatiotemporal fea-

tures by incorporating an extended set of volume local binary pattern (LBP) fea-

tures into a boosting scheme.32 Hadid and Pietikäinen introduce the volume local

binary pattern operator (VLBP), which generalizes the LBP operator that is com-

monly used to encode spatial information. This is accomplished by treating a face

sequence as a rectangular volume and computing the LBP value for each pixel based

on a 3-dimensional neighborhood. The VLBP representation only includes a specific

number of pixels from three frames at a time and thus fails to incorporate sufficient

temporal information or provide flexibility in defining the point neighborhoods.

The proposed extended VLBP (EVLBP) operator surmounts these shortcomings

by allowing a different numbers of neighboring points to be included from different

frames within a temporal window. The AdaBoost learning algorithm determines

the best set of EVLBP features, i.e. those features that enable the discrimination

between subject classes but do not characterize intra-class appearance variations

due to expression. Recognition is performed by constructing a vector of local his-

tograms of EVLBP patterns from the selected regions of a probe face sequence and

performing nearest neighbor matching with the Chi-square distance metric. These

methods achieved respective recognition rates of 97.9% and 96.0% on the CMU

Mobo and First Honda/UCSD datasets.
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Table 8: Selected Unified Tracking and Recognition Approach Results. Conditions

include indoor/outdoor (i/o), varying pose (p), expression (e), and occlusions (c).

All performance results are given as rank-one recognition rates unless otherwise

noted.

Author, Year Subject Count, Video Count, Resolution Conditions

Face Representation Recognition Method Performance

Li et al., 200395 12, 12, Not Described p
Identity surfaces Distance between surfaces 100%

Zhou et al., 200412 29, Not Described, 240x360 i,p,e
Adaptive appearance model Probability propagation 100%

Lee et al., 2005,14 15, 30, 640x480a i,p,c
Probabilistic appearance manifolds Bayesian inference 98.8% max

Note:

aThe authors used the Second Honda/UCSD dataset.

6.1.2. Unified Tracking and Recognition

Kanade and others suggest that proper image registration is critical to pixel-level

illumination and pose normalization procedures, as these methods rely on a strong

correspondence between the points on the facial surface and the image pixels that

cover them.65 Additionally, matchers that draw from appearance features are par-

ticularly sensitive to poor alignment. Using separate tracking and recognition com-

ponents in a face recognition system makes registration more difficult as the tracker

is more likely to return images that do not fit the appearance model used by the

recognition algorithm. Results obtained by Lee et al.14 imply that performing track-

ing and recognition within a common framework results in better alignment and,

hence, improved recognition accuracy. The unification of tracking and recognition

also enables a seamless integration of pose information into the appearance model,

so that score level fusion can be performed in a principled fashion via probability

propagation over the sequence.

Li et al.95 introduce the identity surface feature representation that character-

izes facial appearance variations due to changes in yaw and tilt. Pose estimates

are obtained after fitting a face image to a 3D point distribution and an active

appearance model. In turn, these estimates are used transform the face image to a

standard view. A nonlinear feature vector is subsequently extracted and used for

constructing a piece-wise planar approximation of the identity surface in a kernel

discriminant analysis feature space. The distance between identity surfaces is de-

fined as a weighted sum of distances between corresponding tilt and yaw points,

while face sequences are treated as trajectories traced out on an identity surface.
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Although the trajectory distance accumulates recognition evidence over time,

recognition is still deterministic in the identity surface approach. Additional robust-

ness to degraded viewing conditions and outliers can be obtained via a probabilistic

approach, such as that proposed in Ref. 38, wherein Zhou et al. exploit temporal

cues and identity observations to perform face recognition from video with a gallery

comprised by still images. Their approach estimates the joint identity and kine-

matic state distribution over time using evidence acquired over the video frames.

To propagate prior joint identity and motion distributions, a particle filter, the

CONDENSATION algorithm, is applied. The summed absolute difference between

a detected face image and each gallery template is used to calculate the current

sample weight for each identity and its associated state. The joint state and iden-

tity distribution estimates depend on these weights. Marginalization over the state

variable ultimately provides the identity distribution of the current frames. Zhou

et al.11 achieve efficiency gains over the computationally intensive CONDENSA-

TION filter by accounting for the discrete nature of the identity variable. Perfect

recognition accuracy was achieved on the CMU MoBo dataset when the gallery set

contained fast walking and carrying videos or incline and carrying videos and the

probe set contained all other videos.

Zhou et al.12 focus on stabilizing the particle filter based tracker with an adap-

tive appearance model, an adaptive velocity motion model and an adaptive particle

count. The adaptive appearance model characterizes the appearances in a face se-

quence up to a specific time with a mixture of Gaussians. The mixture components

represent pair-wise frame changes as well as the stable structure observed over a

sequence. Adaptive velocity estimation is performed with a first-order linear pre-

diction method that considers the differences between pairs of consecutive frames.

Unlike the methods proposed in Refs. 11 and 38, an adaptive noise variance pa-

rameter, which varies with the quality of the motion state prediction, is used to

handle large state changes. In addition, the number of particles changes with the

noise variance so that fewer particles are used if the noise has a small variance.

This feature increases the computational efficiency of the algorithm when the qual-

ity of the prediction is high. The use of intra- and extra-personal face spaces along

with the adaptive tracker bolsters strong recognition performance: The proposed

tracking and recognition framework reached 100% recognition accuracy on a (small)

29-subject database acquired with a hand-held camcorder inside different office en-

vironments.

Lee et al.14 propose the probabilistic appearance manifold representation to

handle changes caused by pose variation in a robust and transparent fashion. A

collection of pose-specific linear subspaces connected by transition probabilities

serve as a piecewise approximation of the appearance manifold. Based on this rep-

resentation, a Bayesian inference framework recursively fuses the recognition results

from each frame in a sequence to yield a final decision. Their tracker localizes the

subimage of the next frame with the shortest distance to the linear subspace that

was nearest to the face in the current frame. In turn, that subimage is passed to
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the recognition component.

A manifold learning process clusters faces with similar poses, constructs linear

subspaces from the clusters, and approximates the transition probabilities between

subspaces. First, the linear subspace learning algorithm performs k-means cluster-

ing on the image sequences of a given individual to group images with similar poses.

Principal component analysis on each cluster subsequently yields the collection of

pose-specific linear subspaces. The temporal continuity inherent to the training se-

quences is exploited to derive transition probabilities between the linear subspaces.

The transition probabilities model the continuity of appearance changes caused

by variations in pose; the probability of transitioning between adjacent poses, say

from frontal to five degrees to the left, is higher than that of transitioning between

distant poses, e.g. 90 degrees right to 90 degrees left.

These methods were evaluated on videos from the Second Honda/UCSD dataset.

In videos with and without occlusion, the proposed framework reached 97.8% and

98.8% recognition rates, respectively. The baseline methods performed worse in both

contexts. The strongest performing baseline algorithm, a nearest neighbor matcher

that operates in the original image space, attained 76.3% and 81.6% recognition

rates.

6.1.3. Temporal Methods

It has been frequently observed by the face recognition community that changes

in expression increase intra-class variance.32 In other words, expression variations

increase the difficultly associated with correctly matching images of a particular

person. On the other hand, expressive facial movements can serve as biometric

characteristics.

It is well known in psychology that humans use dynamic facial signatures to

recognize familiar faces.96 This notion was corroborated during a study conducted

by Lander et al.97, wherein human participants recognized animated face sequences

of celebrities more readily than static images. A later study by Lander et al.98

suggested that smiles captured in genuine video sequences aided face recognition

more than computer generated smiles, i.e. authentic expression changes contain

salient identifying characteristics. A battery of tests conducted by Thornton and

Kourtzi involving recognition between faces with different expressions indicated

that subjects trained with animated sequences, as opposed to static images, had

a performance advantage.99 Further, Piltz et al.100 observed that training subjects

with moving faces decreased their reaction times and increased their recognition

rates.

It must be acknowledged that the precise underpinnings of these behaviors re-

main unclear. Nevertheless, these results indicate that automatic face recognition

systems can potentially draw identifying information from motion-based character-

istics, especially in situations involving the recognition of frequently encountered

faces. On a more practical note, temporal cues are not obscured by thick make-up or
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Table 9: Selected Temporal Recognition Approach Results. Conditions include in-

door/outdoor (i/o) and expression (e). All performance results are given as rank-one

recognition rates unless otherwise noted.

Author, Year Subject Count, Video Count, Resolution Conditions

Face Representation Recognition Method Performance

Benedikt et al.,200815 55, 105 3D videos, Not described e
Eigen-coefficients WDTW 99%

Ye and Sim,201016 11, 66, 640x480 i,e
LDPs Facial deformation similarity 30.1% EER

similar facial decorations. These ideas have served as the basis for face recognition

research involving temporal features. In contrast to the spatiotemporal methods

described above, which incorporate temporal and spatial information during recog-

nition, temporal methods rely solely on dynamic features and thus have attained

robustness to expression changes and, in some cases, illumination variations.

For instance, facial motion can be represented by a high-dimensional feature vec-

tor obtained from a sequence of dense optical flow fields and compared in terms of

the distance between vectors, as proposed by Chen et al.17. Experimental results on

synthetic data featuring subjects speaking two words indicated that this technique

has some level of illumination invariance. Matta and Dugelay introduce a tempo-

rally oriented algorithm that computes geometrically normalized feature vectors

expressing eye, nose and mouth displacements over frame sequences.101 Benedikt

et al.15 employ 3D facial actions as biometric signatures. The feature extraction

algorithm performs face model alignment and eigenvector analysis on the 3D face

data. The largest eigen-coefficients of the lip regions from the face observations in a

sequence represent a subject. In turn, a novel pattern matching technique, Weighted

Dynamic Time Warping (WDTW), is used for recognition. WDTW treats a pair of

feature vectors as sequences of data points indexed by the video frame number. The

WDTW match score accounts for the Euclidean distances between points as well as

their first and second derivative differences. The authors found that the utterance

of the word “puppy” is a strong behavioral signature as its accompanying facial

actions are both distinctive and reproducible. The proposed algorithm reached a

99% rank-one recognition rate on a private dataset comprised by 3D videos of 55

subjects speaking the word “puppy”.

The temporal approaches discussed in Refs. 17 and 15 constrain the types of

motion that are allowed as subjects must speak particular words, rendering the face

recognition process more obtrusive and less practical for uncontrolled applications.

Ye and Sim avoid these pitfalls with a strategy that incorporates biometric charac-

teristics drawn from locally similar facial motions, i.e. motions that might differ on
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a global scale yet share common local features such as the way the muscles stretch

or contract around a particular face region.16 Facial deformation patterns are char-

acterized with the Right-Cauchy Green deformation tensor, which captures how

facial features are displaced when the face changes from a neutral expression. The

tensors and associated displacement field vectors for each pixel in every frame from

a sequence are collected in a set called the Local Deformation Profile (LDP). The

associated LDP similarity score measures how similar the deformations are between

a pair of faces. Motion similarity is incorporated as a confidence measure to avoid

mistaking differences in movement for differences in identity. These techniques were

tested on various subsets of the 97 subject Cohn-Kanade database. In a challeng-

ing experiment involving recognition across happy, sad, surprise, fear, anger and

disgust expressions for 11 subjects, the proposed temporal scheme reached a 30.1%

EER. Robustness to thick facial makeup was exhibited in another experiment.

The temporal methods described here are robust to facial decorations and, po-

tentially, illumination. Numerous problems associated with the temporal approach

to face recognition from sequences still remain unsolved. One open topic is whether

or not facial motions with longer durations allow for more reliable or more accurate

recognition. Additionally, the experiments discussed in Refs. 15, 16 and 17 focus

on subjects viewed from frontal angles. The extent to which temporal algorithms

tolerate out-of-plane rotations remains to be seen. Likewise, the subjects observed

in the experimental datasets tend to stand close to the sensor: How quickly does

the accuracy of these systems degrade as the resolution decreases? More research

is needed before temporal methods can reach the level of maturity of other face

recognition approaches.

7. Future Challenges and Directions

Some of the algorithms discussed above have achieved success on challenging

datasets. Systems incorporating face recognition technology have already been de-

ployed in surveillance,102 social networking,103 and movie indexing domains.104 Suc-

cess in these applications is still limited as a number of problems and research chal-

lenges remain unsolved or unaddressed. A brief overview of these research issues,

potential applications and open problems is given below.

7.1. Larger and More Challenging Datasets

The field of face recognition from video lags behind other biometric fields in terms of

dataset size. Early work on video-based face recognition used databases containing

about 20 subjects.6 Today, datasets comprised by thousands of videos and hundreds

of subjects are available to the public, such as the video collections featured by the

Multiple Biometric Grand Challenge.26 But evaluations on databases of this size are

not common. Likewise, large-scale indexing tests are rare in academia, despite the

fact that video-indexing systems have a large amount of data readily available from

movies, TV shows and web videos. Kim et al.25 have made great strides towards
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addressing this problem by aggregating almost 2,000 YouTube videos of almost 50

famous people to form the YouTube Celebrities dataset.

Further, face recognition from video represents a particularly difficult problem

due the infinite number of possible appearance variations face sequences can span.

The level of difficulty of most current databases is nevertheless lacking. Surveil-

lance quality video datasets that incorporate crowds of people, occlusions, signif-

icant amounts of noise and compression artifacts alongside variations in pose, il-

lumination and expression are necessary to evaluate performance in uncontrolled

environments. The performance evaluations for sequence-based methods, in partic-

ular, have not traditionally drawn from such challenging data. Conversely, the level

of difficulty for a dataset should not be so high that it precludes the possibility of

researchers making reasonable progress. As methods mature and their robustness

to the nuisance factors continues to increase, this situation should improve and the

difficulty levels of successive generations of research datasets should continue to

increase.

7.2. The Watch List Task

In the biometrics domain, the watch list task is more challenging than those of

verification and identification. It involves an open set problem and thus requires

multiple decisions. The face recognition system must determine whether or not

someone is in the gallery and, if that person is found, return a match. Much of

the current literature on face recognition from video ignores the watch list applica-

tion and focuses on the verification and identification instead. However, watch list

applications arise often in the law enforcement domain.3

7.3. Clustering Applications

Research on face clustering has driven the development of video and image index-

ing software, such as Apple’s iPhoto and Google’s Picasa, which allows users to

automatically organize face image collections. Clustering is the process by which

natural groupings or relationships within data are identified. In video-indexing and

retrieval applications, clustering can be used to group face images or sequences of

the same person together when a database of known identities is not available for

matching. Such automatic processing eliminates or reduces the burden of manually

labeling thousands or millions of faces in videos or photo albums from personal,

movie or news collections.

The initial research on clustering face sequences includes the work of Antonopou-

los et al.105, who employ the hierarchical agglomerative clustering algorithm as a

means of grouping images of actors from movie videos. Faces are grouped together

based on the similarity of scale invariant feature transform descriptors (SIFT). In

one of the earliest works on anchor detection, Chan et al.106 propose a method

to recognize people who repeatedly appear in news videos that incorporates k-

means clustering. Similarly, Raytchev and Murase successfully employ exemplars
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to construct high quality face sequence clusters.107 The learning algorithm proposed

therein first tessellates areas in the face space, computes an exemplar face vector for

each area, and then alters the clusters to minimize the representation error incurred

by the exemplar selections. In Ref. 108, Raytchev and Murase propose a clustering

algorithm that iteratively builds a complete graph in which vertices represent frame

sequences and edge labels indicate whether connected face sequences most likely

correspond to the same person. Clusters are formed from vertex sets on the basis of

the edge labels. Raytchev and Murase present another method for clustering that

computes forces attraction and repulsion in Ref. 109. With the aim of analyzing

internet videos, the automatic content analysis system proposed by Holub et al.110

applies hierarchical agglomerative clustering to organize face image sequences.

Recent work on face clustering from video has begun to directly address nuisance

factors, such as pose. Tao and Tan handle the problem of clustering face sequences

from movies with significant pose variations by partitioning sequences into subse-

quences containing faces with similar poses.111 They present strong results from

clustering experiments involving segments from three movies: Harry Potter and the

Goblet of Fire, The Queen, and Secret. A similar framework for automatically la-

beling the faces of characters in TV or movie videos using subtitle and script text

is proposed by Sivic et al. in Ref. 112. Agglomerative clustering is applied during

tracking to link together frontal and profile images of the same face based on the

optical flow feature points they share in common; face sequences are compared using

person specific multiple kernel discriminative classifiers. Likewise, Yang et al.113,114

associate labels from transcripts with faces and use PCA based face recognition

and multi-instance learning to increase video retrieval accuracy despite challenging

variations in appearance.

Today, popular commercial applications such as Facebook, Google’s Picasa and

Apple’s iPhoto include face recognition features that attempt to group together

images according to identity, ultimately with the goal of reducing the time cost

associated with labeling large image collections. As noted by Chellappa et al.65, this

application presents unique challenges and opportunities. For instance, algorithms

that exploit the overlap between the social networks of multiple users can potentially

save people time that would have been spent on labeling the faces of mutual friends.

Extending these applications to the video domain presents additional difficulties due

to the general lack of constraints and the computational resources involved.

7.4. Video Understanding Applications

In domains where the performance on low-level tasks such as identification and

tracking is sufficient, more complex face recognition applications can be addressed.

High-level tasks, namely analyzing crowds, automatically discovering social groups

and determining which individuals appear frequently in a collection videos, con-

stitute but a portion of the future applications of face recognition technology. For

example, Vallespi et al.115 propose a meeting understanding system for recognizing
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and counting meeting attendees. Face recognition based methods for automatically

understanding social network patterns in crowds of people observed by a surveil-

lance camera network are presented by Yu et al. in Ref. 116. Barr et al.24 detect in-

dividuals that appear unusually often across a set of videos showing related events,

with the idea that such individuals might be involved with these activities. The

recent emergence of such high-level applications exemplifies the growing trend to-

ward using face recognition from video to understand and track the complementary

behaviors of individuals and groups.

7.5. Mobile Devices

The ubiquity of mobile phones and tablet devices equipped with digital cameras

has introduced a wide range of possible applications for face recognition technol-

ogy. As of early 2012, Google already provides identity verification software that

allows a user to unlock Android devices by presenting his or her face to the camera

(see Ref. 117), while Apple recently filed a patent application for an efficient low

threshold face recognition pipeline with stages for face detection, verification and

basic liveness detection (see Ref. 118).

Likewise, research on face recognition in mobile environments has mostly fo-

cused on the verification task. This small body of work has addressed two types of

problems, the first of which pertains to imaging conditions and the second of which

relates to computational efficiency. Mobile devices typically rely on low quality cam-

eras that often yield noisy and under- or overexposed images. The captured images

also tend to be highly compressed to save space. These issues are compounded by

the fact that the devices are mobile, which means that the illumination conditions

and backgrounds can vary substantially between images of the same face. In regards

to efficiency, although many new models of mobile devices incorporate moderate

amounts of memory and multi-core processors with clock speeds near or beyond 1

GHz, processing speed is still a key issue since the these devices still lag far behind

their immobile counterparts on the desktop or in the server room. As far back as

2005, Venkataramani et al. 119 studied methods for coping with the low quality im-

agery acquired by mobile cameras. Hadid et al.120 presented a simple yet effective

detection and verification scheme that uses the Viola-Jones method to find faces

and a local binary pattern matcher for authentication in 2007. This system was

able to verify faces at a rate of two frames per second on a smart phone equipped

with a 220 MHz ARM 9 processor.

Numerous open issues and new applications remain. From a practical stand-

point, verification on mobile devices is a relatively easy task, as users generally will

cooperate by presenting their face at an upright, frontal pose within a short distance

from the camera. False negatives and acquisition failures do not incur a significant

cost as users can fall back to the traditional PIN based authentication interface. A

much more difficult problem is to analyze faces in arbitrary photographs and au-

tomatically identify people by treating personal photo albums as ad hoc galleries.
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More efficient methods for detection, registration and identification will be required

before face recognition can be applied in such contexts. For instance, little work has

been done on adapting robust face trackers to find faces in mobile environments

at arbitrary distances from the camera. Face trackers are generally more efficient

than detectors since they do not perform a full search over all of the frames, and

they can potentially improve registration.14 The potential research directions also

extend into the domains of social network analysis and law enforcement.

7.6. Multimodal Approaches

Much of the research on face recognition from video has focused on representing

individuals in terms of the appearance, structure or dynamics of their faces. On the

other hand, a variety of identifying characteristics are typically visible and comple-

mentary forms of information such as audio often accompany videos. Information

from the face can potentially be fused with that from other biometric modalities

to increase recognition accuracy or to compensate for scenarios where some of the

sources cannot be observed. The improvements in performance are proportional to

how strongly the various modalities are correlated. The human face notwithstand-

ing, possible biometric modalities include gait, voice, typing style, signature and the

iris, amongst others. As an indicator of the current state of multimodal recognition

from video, a small selection of recent works that incorporate face sequences with

other data sources are briefly discussed below.

Information fusion approaches can either be hierarchical, holistic, or a combina-

tion thereof. Hierarchical methods employ different algorithms for distinct modal-

ities at different times. The algorithms that execute later use information from

algorithms that complete earlier. For instance, Chellappa et al.121 propose the use

of view-invariant gait recognition in scenarios where an individual is located far

from the camera. The gait recognition results are used to narrow the search space

for a face recognition algorithm that operates when the individual nears the camera.

The face recognition process thus becomes more efficient as fewer face comparisons

are required. Identification can also occur over a wider range of conditions because

the operating ranges of each recognition component offset one another.

Holistic methods fuse the match scores, decisions or data from multiple infor-

mation source. In Ref. 121, Chellappa et al. employ score level fusion over the

gait and face modalities. Pentland et al.122 combine speaker identification and face

recognition with a Bayesian network, while Weng et al.123 introduce the incremen-

tal hierarchical discriminating regression (IHDR) tree and use it to map faces and

audio clips to identity labels. Song et al.124 employ a variant of a multiple-instance

learning algorithm along with automatic speech recognition to construct face ap-

pearance models.
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7.7. Temporal Feature Aging

Security and surveillance systems that compare video sequences acquired over long

periods will naturally benefit from biometric characteristics that are invariant to

age. The alternative of updating the gallery on a regular basis can require a signifi-

cant number of man hours over time. This fact, amongst many others, has motivated

research on face aging (see Ref. 125 for a review). Research on aging and its effects

on face recognition from video has been neglected despite the growing interest in

face aging. A multitude of questions remain unaddressed in this area:

• How and to what extent do the ways in which people make certain expressions

change as they age?

• Do some facial regions move in ways that are easier to recognize over time relative

to other regions?

• Are spatial features more robust to aging than temporal features?

• Can automatic spatiotemporal feature aging be performed to mitigate the effects

stemming from age differences?

• Conversely, do temporal features capture information which can be used to pre-

dict the age of a person?

• What types of movement should be captured in video datasets to test hypotheses

about aging?

The interplay between facial dynamics and aging effects presents a rich variety

of open problems.

7.8. Sparse Representation

Recent developments in the theory of compressive sensing and sparse representation

have played an increasingly large role in many research disciplines, including face

recognition.126,127,128 Compressive sensing is a reconstruction technique for gener-

ating a signal such as a face pattern from an overcomplete basis. The underlying

assumption is that the most useful reconstruction is sparse in that it should only

depend on a small number of basis vectors and the corresponding coefficient vector

should largely consist of values near zero. In the case of face recognition, a newly

observed face pattern is reconstructed using a linear combination of the training

patterns. This problem is generally underdetermined because the dimensionality of

the input data typically exceeds the size of the training set, i.e. the pattern can

be reconstructed with multiple coefficient vectors. However, a sufficiently sparse

coefficient vector can compactly represent the test pattern and generally has non-

zero entries for the training patterns of one class. Such a coefficient vector thus

indicates the class of the test pattern. The classification problem is consequently

reduced to the problem of computing a sufficiently sparse coefficient vector, which

can be solved in polynomial time with respect to the number of training samples

using a variety of L1-minimization algorithms.

The body of work on sparse representation techniques for image based face
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recognition is growing. In Ref. 126, Wright et al. propose the face recognition frame-

work discussed above and show that it is robust to noise and occlusion, especially

when the face patterns consist of pixel features. Later work by Wagner et al.127 ex-

tends this scheme by increasing its robustness to illumination variations and align-

ment errors. Liao et al.128 avoid the alignment problem altogether while improving

robustness to pose changes by representing faces with SIFT descriptors. They for-

mulate the reconstruction problem in terms of the descriptors found on test images

and a basis of training image descriptors. Sparse representation methods have also

been evaluated on tracking problems. A vehicle tracker that employs a particle

filter for motion state estimation along with sparse representation techniques for

recognition is introduced by Mei et al. in Ref. 129.

The inherent robustness to occlusion and noise potentially makes sparse repre-

sentation techniques ideal for identifying faces in unconstrained situations or with

non-cooperative subjects. Conversely, solving an L1-minimization problem is more

computationally intensive than invoking a nearest neighbor classifier. This differ-

ence currently renders real-time recognition infeasible. Refs. 126 and 127 report

average recognition times that are on the order of seconds for desktop PCs running

experiments on thousands of training images. The appearance based recognition

algorithms, Refs. 126, 127 and 129, downsample images to compensate for the com-

putational burden of their approaches. Wagner et al.127 suggest that their alignment

algorithm could easily be extended to form an efficient multiscale scheme. Along the

same lines, Liao et al.128 tradeoff accuracy for speed by filtering the dictionary of

SIFT descriptors before reconstruction. An average recognition time of 0.8 seconds

was reached on server grade hardware with no loss in accuracy when the dictio-

naries were restricted to 1,000 descriptors. Additional efficiency gains are required

before sparse representation techniques can be employed in real-time. Moreover,

the applicability of the sparseness assumption to temporal and spatiotemporal face

representations is still unknown.

7.9. The Spatiotemporal Tradeoff

The sequence-based approach exploits the temporal continuity inherent to videos

and so handles degraded viewing conditions well. In Ref. 48, Hadid and Pietikäinen

present a small scale comparison of simple set-based algorithms to popular spa-

tiotemporal algorithms on low resolution face images. Two set-based methods that

combine sum fusion with PCA and LDA matchers were evaluated alongside the

ARMA and HMM spatiotemporal algorithms on the CMU MoBo dataset. The au-

thors downsampled the face images to a variety of resolutions, the lowest of which

was 10x10. The PCA, LDA, ARMA and HMM based algorithms reached respective

recognition rates of 60.6%, 56.5%, 71.2% and 74.2% on the 10x10 images. These

results suggest that these particular set-based techniques require relatively high res-

olution images in order to achieve comparable accuracy. Conversely, it was found

that the spatiotemporal algorithms often need to observe a significant number of
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frames before they can offer stable recognition results. The emperical results pre-

sented in Ref. 48 indicate that HMMs may need to observe 200 or more video

frames, or about six seconds worth of footage for a 30 frame per second video,

before they can surpass the recognition performance of the simple PCA and LDA

algorithms. Likewise, the performance of the ARMA model also suffered before a

sufficient number of frames passed. This study begins to answer the question: What

are the inherent trade-offs associated with relying on temporal information more

than spatial cues and vice versa?

Psychological observations suggest that humans strike a balance between pro-

cessing spatial and temporal evidence when recognize faces. Burton et al.130 ob-

served that human subjects recognize faces more accurately in poor quality surveil-

lance video when the recorded individuals are familiar colleagues instead of people

that they do not encounter often. As to how dynamics aid recognition, cues from

expressive or speech related movements have been shown to aid recognition more

than rigid motion alone.131 This phenomenon suggests that humans obtain identi-

fying behavioral characteristics from face sequences as opposed to cues about the

3D structure of the face. Even though people rely on static appearance cues more so

than dynamic characteristics, especially when recognizing unfamiliar faces,5,83 re-

sults obtained by Davies et al.132 show that images that only contain high frequency

content in the form of unshaded edges are exceptionally difficult to recognize.

Addressing this question in the field of automatic face recognition from video

will require a larger scale study than that presented in Ref. 48. Comparing the so-

phisticated set-based techniques such as the super-resolution schemes presented in

Refs. 54, 53, 49, 57 and 58 might give a better indication of the relative performance

merits of drawing from temporal versus spatial information. Likewise, comparisons

against 3D model based methods, e.g. those discussed in Refs. 27, 60, 29 and 28,

could provide insight into the trade-offs associated with using geometric charac-

teristics. Such results would benefit the fields of automatic and human based face

recognition alike.
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53. O. Arandjelović and R. Cipolla, “A Manifold Approach to Face Recognition from
Low Quality Video Across Illumination and Pose using Implicit Super-Resolution,”
Proc. 2007 IEEE International Conference on Computer Vision, 2007.

54. M. Al-Azzeh, A. Eleyan, and H. Demirel, “PCA-based Face Recognition from Video
Using Super-resolution,” Proc. 2008 International Symposium on Computer and In-
formation Sciences, pp. 1–4, 2008.

55. W. Freeman, T. Jones, and E. Pasztor, “Improving Resolution by Image Registra-
tion,” CVGIP: Graphical Models and Image Processing, vol. 53, pp. 231–239, 1991.

56. X. Zhou and B. Bhanu, “Human Recognition Based on Face Profiles in Video,”
Proc. 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition - Workshops, p. 15, June 2005.

57. R. R. Jillela and A. Ross, “Adaptive Frame Selection for Improved Face Recognition
in Low-resolution Videos,” Proc. 2009 International Joint Conference on Neural
Networks, pp. 2835–2841, 2009.

58. S. Baker and T. Kanade, “Limits on Super-resolution and How to Break Them,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 9, pp.
1167–1183, 2002.

59. P. Sinha, B. Balas, Y. Ostrovsky, and R. Russell, “Face Recognition by Humans:
Nineteen Results All Computer Vision Researchers Should Know About,” Proceed-



April 20, 2012 16:2 FaceRecognitionFromVideoDraft17

Face Recognition from Video: A Review 51

ings of the IEEE, vol. 94, no. 11, pp. 1948–1962, 2006.
60. Y. Xu, A. Roy-Chowdhury, and K. Patel, “Integrating Illumination, Motion, and

Shape Models for Robust Face Recognition in Video,” EURASIP Journal on Ad-
vances in Signal Processing, 2008.

61. U. Park, H. Chen, and A. Jain, “3D Model-Assisted Face Recognition in Video,”
Proc. 2005 Canadian Conference on Computer and Robot Vision, pp. 322–329, 2005.

62. D. Thomas, K. Bowyer, and P. Flynn, “Multi-Factor Approach to Improving Recog-
nition Performance in Surveillance-Quality Video,” pp. 1–7, October 2008.

63. D. P. Robertson and R. Cipolla, Practical Image Processing and Computer Vision.
John Wiley, 2009, ch. Structure from Motion.
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