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Abstract

Face recognition performance degrades considerably when the input images are of low resolution

as is often the case for images taken by surveillance cameras or from a large distance. In this paper,

we propose a novel approach for matching low resolution probe images with higher resolution gallery

images, which are often available during enrollment, using multidimensional scaling. The ideal scenario

is when both the probe and gallery images are of high enough resolution to discriminate across different

subjects. The proposed method simultaneously embeds the low resolution probe images and the high

resolution gallery images in a common space such that the distances between them in the transformed

space approximates the distances had both the images been of high resolution. The two mappings

are learned simultaneously from high resolution training images using iterative majorization algorithm.

Extensive evaluation of the proposed approach on the Multi-PIE dataset with probe image resolution

as low as 8 × 6 pixels illustrates the usefulness of the method. We show that the proposed approach

improves the matching performance significantly as compared to performing matching in the low-

resolution domain or using super-resolution techniques to obtain a higher-resolution test image prior

to recognition. Experiments on low resolution surveillance images from Surveillance Cameras Face

Database further highlight the effectiveness of the approach.
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I. INTRODUCTION

Due to its wide range of commercial and law enforcement applications, face recognition

has been one of the most important areas of research in the field of computer vision and

pattern recognition. Though current algorithms perform well on images captured in controlled

environments, their performance is far from satisfactory for images taken under uncontrolled

scenarios [1]. Recently, the proliferation of surveillance cameras for security and law-enforcement

applications has motivated the development of algorithms which are more suited for handling

the kind of images captured by these cameras. Due to the large distance of the camera from

the subject, these images usually have very low resolution (LR) face regions which considerably

degrades the performance of traditional face recognition algorithms developed for good quality

images [2]. Discriminatory properties present in the facial images used for distinguishing one

person from the other are often lost due to the decrease in resolution resulting in unsatisfactory

performance. On the other hand, high resolution (HR) images of the subjects may be available

during enrollment in many cases. Apart from the poor distinguishing properties of the low-

resolution images, the resolution difference of the probe and gallery images makes the problem

even more challenging. In addition to being able to handle LR images, the algorithms should be

efficient enough to handle the large amount of data captured continuously by the surveillance

cameras. Though a lot of work has been done on the problem of face recognition to address

issues like illumination and pose variations, it is only recently that efforts have been made to

deal with matching LR probe images with HR gallery images [3] [2].

There are two standard approaches for addressing this problem: 1) The gallery images are

down-sampled to the resolution of the probe images and then recognition is performed. But in this

approach, the additional discriminating information available in the high resolution gallery images

is lost. 2) The second and more widely used approach relies on super-resolution techniques to

obtain higher resolution probe images [4][5] from the low resolution images which are then used

for recognition. Most of these techniques aim to obtain a good high resolution reconstruction

and are not optimized with respect to recognition performance. Recently there have been efforts

to perform super-resolution and recognition simultaneously [2]. But in this approach, given a

probe image, the optimization needs to be repeated for each gallery image in the database which

might result in high computational overhead, especially for databases of large size.
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Fig. 1. Overview of the proposed algorithm. The proposed method simultaneously embeds the LR probe and the HR gallery

images in a common space such that the distances between them in the transformed space approximate the distances that would

have been obtained had both the images been of high resolution.

In this work, we propose a novel approach for matching LR probe images with HR gallery

images using Multidimensional Scaling (MDS). The ideal scenario is when both the images

are of high resolution thus retaining all the discriminatory properties. The proposed method

simultaneously embeds the LR probe and the HR gallery images in a common space such that

the distances between them in the transformed space approximates the distances that would

have been obtained had both the images been of high resolution (Fig. 1). We show how the two

mappings can be learned simultaneously using MDS. The iterative majorization technique is

used to learn the transformations from HR training images. The transformations are learned off-

line from the training images thus making the approach very efficient. During testing, the input

images are transformed using the learned transformation matrix and then matching is performed.

Extensive experiments are performed to evaluate the effectiveness of the proposed approach

on the Multi-PIE [6] dataset. The proposed approach improves the matching performance signifi-

cantly as compared to performing standard matching in the low-resolution domain. The proposed

approach also performs considerably better than those of different super-resolution techniques
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which obtain higher-resolution images prior to recognition. Performance with different kinds of

features shows that the approach is very general and does not depend on the particular kind of

input feature used. Comparison with classifier-based approaches further highlights the effective-

ness of the approach. Results of experiments on low resolution images from the Surveillance

Cameras Face Database [7] are also provided. A preliminary version of this work appeared

in [8] which addressed the problem of improving the performance of LR facial images using

the distance information between HR images. But that work did not address the problem of

matching a LR probe image with HR images in the gallery.

II. PREVIOUS WORK

In this section, we discuss the related approaches in the literature. Most of the current

approaches which address the problem of face recognition from images of low resolution follow

a super-resolution approach. These approaches aim to obtain an HR image from the LR input

which is then used for recognition. Many of the current super-resolution techniques use face

priors to obtain better image reconstruction. Baker and Kanade [4] [9] propose an algorithm to

learn a prior on the spatial distribution of the image gradients for frontal images of faces. The

gradient prior is learned using a collection of high resolution training images of human faces.

Chakrabarti et al. [5] propose a learning-based method using kernel principal component analysis

for deriving prior knowledge about the face class for performing super-resolution. Liu et al. [10]

propose a two-step statistical modeling approach for hallucinating an HR face image from an

LR input. The relationship between the HR images and their corresponding down-sampled and

smoothed LR images is learned using a global linear model and the residual high-frequency

content is modeled by a patch-based non-parametric Markov network.

Freeman et al. [11] explore training-based super-resolution algorithms in which the fine details

corresponding to different image regions seen at a low resolution are learned from a training set

and then the learned relationships are used to predict fine details in other images. Chang et al. [12]

use manifold learning approaches for recovering the HR image from a single LR input. The

basic idea is that small image patches in the low and high-resolution images form manifolds with

similar local geometry in two distinct feature spaces. The high-resolution embedding is estimated

using training image pairs. A novel patch-based face hallucination framework is proposed by

Liu et al. [13]. First, the relation of the different constituent factors including identity and patch-
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locations is learned using a TensorPatch model. Assuming that the low-resolution space and high-

resolution space share similar local distribution structure, the estimated parameters are used for

synthesizing high-resolution images. Yang et al. [14] address the problem of generating a super-

resolution image from a low-resolution input image from the perspective of compressed sensing.

Regression based techniques like kernel ridge regression have also been used to learn a mapping

from input LR images to target HR images from example image pairs [15]. Since many face

recognition systems use an initial dimensionality reduction method, Gunturk et al. [16] propose

eigenface-domain super-resolution in the lower dimensional face space. Some other approaches

like support vector data description [17] and advanced correlation filters [18] have also been

used to address this problem. Several super-resolution approaches also try to reconstruct a high

resolution image from a sequence of input images [19].

The main aim of these techniques is to produce an HR image from the LR input using assump-

tions about the image content, and they are usually not designed (or optimized) from a matching

perspective. Recently, Hennings-Yeomans et al. [2] proposed an approach to perform super-

resolution and recognition simultaneously. Using features from the face and super-resolution

priors, the authors aim to extract an HR template that simultaneously fits the super-resolution as

well as the face-feature constraints. Arandjelovic and Cipolla [20] propose a generative model

for separating the illumination and down-sampling effects for the problem of matching a face in

an LR query video sequence against a set of HR gallery sequences. The illumination model is

learned from training data of different individuals with varying illumination while the LR artifact

model is estimated on a person-specific basis using enrolled person’s training sequences. Given

an LR face image, Jia and Gong [3] propose directly computing a maximum likelihood identity

parameter vector in the HR tensor space which can be used for recognition and reconstruction

of HR face images.

III. PROBLEM FORMULATION

In this section, we describe the proposed formulation for matching LR probe images with

HR images present in the gallery using a MDS approach. We want to transform the HR and

LR input images in such a way that the distances between them approximates the distances that

would have been obtained had both the images been of high resolution.

We learn the transformations using a training set consisting of HR images and LR images
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of the same subjects. The HR and LR images of the same subject need not be obtained under

the same imaging conditions. We do not assume any subject overlap between the training set

and the gallery set. Let the HR training images be denoted by Ihi , i = 1, 2, ... · · · , N and the

corresponding LR images of the same subjects be denoted by Ili, where N is the number of HR

or LR images. In the absence of HR and LR images of the same subject, the LR images can

be generated from the HR images by downsampling and smoothing. Let xh and xl denote the

features of the HR and LR images respectively. Since the two images to be matched have different

resolution, the size of the images as well as the features extracted from the images can have

different dimensions and semantics. Given training data, our goal is to find transformations such

that the distances between the transformed LR and HR feature vectors xl
i and xh

j approximates

dhi,j . Here dhi,j denotes the distance between the feature vectors corresponding to the HR images

and is given by

dhi,j = D(xh
i ,x

h
j ) (1)

Here the distance measure D can be chosen depending upon the kind of feature used to represent

the images.

IV. PROPOSED APPROACH

Let f : Rk → Rm denote the mapping from the Rk input feature space to the embedded

Euclidean space Rm. Here m is the dimension of the output transformed space and k denotes

the input dimension. We consider the mapping f = (f1, f2, · · · , fm)T to be a linear combination

of p basis functions of the form

fi(x;W) =
p∑

j=1

wjiφj(x) (2)

where φj(x); j = 1, 2, · · · , p can be a linear or non-linear function of the input feature vector x.

Here [W]ij = wij is the p ×m matrix of the weights to be determined. The mapping defined

by (2) can be written in a compact manner as follows

f(x;W) = WTφ(x) (3)

In this case, since the two images to be matched are of different resolutions, two different

transformations are required to transform the LR and the HR images to the common space. Let
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Wh and Wl denote the transformation matrices for the HR and LR feature vectors respectively.

Let the basis functions for the HR and LR feature vectors be given by

φh(xh) = [φh
1(xh), φh

2(xh), · · · , φh
ph

(xh)]T

φl(xl) = [φl
1(x

l), φl
2(x

l), · · · , φl
pl

(xl)]T

Here ph and pl represent the number of basis functions of the HR and LR feature vectors

respectively, which can be same or different. Thus the mappings corresponding to the LR and

HR images can be written as

f(xh;Wh) = WhTφh(xh); f(xl;Wl) = WlTφl(xl) (4)

The goal is to transform the feature vectors of the HR and LR images such that the distance

between the transformed feature vectors approximates the distance dhi,j . So we want to find the

matrices Wh and Wl which minimizes the following objective function

JDP(Wl,Wh) =
N∑
i=1

N∑
j=1

(qij(W
l,Wh)− dhi,j)

2 (5)

Here N is the number of HR (or LR) training images. The term qij(W
l,Wh) denotes the distance

between the transformed feature vectors of the ith LR and jth HR training images and is given

by

qij(W
l,Wh) = |Wlφl(xl

i)−Whφh(xh
j )| (6)

The distance between the corresponding HR images is dhi,j . Note that the distance qij(Wl,Wh)

and thus the optimization function depends on both the transformation matrices.

Since our goal here is to improve the matching performance, the objective function in (5)

can be modified to include class information of the training data. Thus a class separability term

(JCS) can be added to the distance preservation term (JDP) resulting in the following objective

function

J(Wl,Wh) = λJDP(Wl,Wh) + (1− λ)JCS(Wl,Wh)

= λ
N∑
i=1

N∑
j=1

(qij(W
l,Wh)− dhi,j)

2

+ (1− λ)
N∑
i=1

N∑
j=1

δ(ωi, ωj)q
2
i,j(W

l,Wh) (7)
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The first term JDP is the distance preserving term which ensures that the distance between

the transformed feature vectors approximates the distance dhi,j . JCS is a class separability term

to further facilitate discriminability. ωi denotes the class label of the ith class. The parameter

λ controls the relative effect of the distance preserving and the class separability terms on the

total optimization. A simple form of the class separability term is given by [21]

δ(ωi, ωj) = 0; ωi 6= ωj

= 1; ωi = ωj (8)

This specific form of the class separability term penalizes larger distances between data points

of the same class, but does not affect data points of different classes. More sophisticated terms

may also be used seamlessly with the formulation.

A. Combined transformation matrix

The goal is to find the two transformation matrices Wh and Wl corresponding to the HR

and LR feature vectors. In this section, we show how we can solve for the two transformations

simultaneously using a combined transformation matrix W. The distance qi,j(Wl,Wh) between

the transformed LR and HR feature vectors can be written as

qi,j(W
l,Wh) = |WlTφl(xl

i)−WhT

φh(xh
j )|

=
∣∣∣ ( WlT WhT

) φl(xl
i)

−φh(xh
j )

 ∣∣∣
= |WT (φ̄l(xl

i)− φ̄h(xh
j ))| (9)

Here the new matrix W is a concatenation of the two transformation matrices given by WT =(
WlT WhT

)
. The new vectors φ̄l(xl) and φ̄h(xh) are given by

φ̄l(xl) =

 φl(xl)

0ph×1

 ; φ̄h(xh) =

 0pl×1

φh(xh)

 (10)

Here 0k×1 denotes a vector of zeros of length k × 1. Thus the modified vectors φ̄h(xh) and

φ̄l(xl) are of equal length even though φ(xh) and φ(xl) may be of different lengths. Now the

goal is to compute the transformation matrix W by minimizing the objective function given
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by (7). Separating the terms containing the transformation matrix, the objective function can be

rewritten as

J(W) =
N∑
i=1

N∑
j=1

αi,j(qi,j(W)− βi,jdhi,j)
2

+ λ
N∑
i=1

N∑
j=1

γi,j(d
h
i,j)

2 (11)

The expression for the different terms are given by

αi,j = (1− λ)δ(ωi, ωj) + λ

βi,j =
λ

αi,j

and

γi,j = 1− λ

(αi,j)2

The second term in (11) is independent of W and thus does not effect the optimization. So the

objective function to be minimized for computing the transformation matrix is given by

J(W) =
N∑
i=1

N∑
j=1

αi,j(qi,j(W)− βi,jdhi,j)
2 (12)

Next we will describe the algorithm which can be used for minimization of functions of the

above form.

B. Iterative Majorization Algorithm

The iterative majorization algorithm [21][22][23] is used to minimize the objective func-

tion (12) to solve for the transformation matrix W. The central idea of the majorization method

is to replace iteratively the original function J(W) by an auxiliary function g(W,V). The

auxiliary function, also known as the majorization function of J(W) is simpler to minimize

than the original function. It can be shown that the majorization function for J(W) is given by

g(W,V) = Tr(WTAW) +
N∑
i=1

N∑
j=1

αi,j(d
h
i,j)

2

− 2Tr(VTC(V)W) (13)

Here Tr denotes the matrix trace and A is given by

A =
N∑
i=1

N∑
j=1

αi,j(φ̄l
i − φ̄h

j )(φ̄l
i − φ̄h

j )T (14)
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The term C(V) is given by

C(V) =
N∑
i=1

N∑
j=1

ci,j(V)(φ̄l
i − φ̄h

j )(φ̄l
i − φ̄h

j )T ;

ci,j(V) =

 λdhi,j/qi,j(V); qi,j(V) > 0

0; qi,j(V) = 0
(15)

First, W is initialized to W0. The different steps of the algorithm are enumerated below:

1) Start iteration with t = 0.

2) Set V = Wt.

3) Update Wt to Wt+1, where Wt+1 is the solution that minimizes the majorization function

and is given by

W = A−1C(V)V (16)

where A−1 is the Moore-Penrose pseudo-inverse of A.

4) Check for convergence. If convergence criterion is not met, set t = t + 1 and go to step

2, otherwise stop the iteration and output the current W.

The output of the iterative majorization algorithm is a transformation W which embeds the input

LR and HR images to a new Euclidean space such that the inter-distances between them closely

approximates the distances had both the images been of high resolution. Please refer to [23] for

more details of the iterative majorization algorithm.

C. Matching

During matching, the feature vectors of both the LR probe and HR gallery images are first

transformed using the learned transformation matrix. If xp and xg denote the feature vectors

corresponding to an LR probe and an HR gallery image, the transformed feature vectors are

given by

x̂g = WT φ̄h(xg); x̂p = WT φ̄l(xp) (17)

The distance between the probe and gallery image is computed as the Euclidean distance between

their transformed feature vectors as follows

d = |x̂g − x̂p| = |WT (φ̄h(xg)− φ̄l(xp))| (18)
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Fig. 2. Flow chart of the proposed algorithm. The different steps are (a) feature extraction from both the HR and LR training

images, (b) kernel mapping, (c) computing the expanded feature vectors as in (10). These features are used along with the

distances between the HR features to compute the transformation matrix using the iterative majorization algorithm.

Since the transformation can be learned offline from training data, the algorithm is very fast and

is suitable for databases of large size as can be expected from surveillance cameras. A flowchart

of the proposed algorithm is shown in Fig. 2.

V. EXPERIMENTAL EVALUATION

In this section, we describe the details of extensive experiments performed to evaluate the

usefulness of the proposed approach to match LR probe images with HR gallery face images.

The experiments are designed to answer the following questions

• Does the proposed approach succeed in facilitating direct comparison of LR probe images

with the HR gallery images (without prior down-sampling or super-resolution step as is

traditionally done)?

• How does the approach compare against the typical approach of performing super-resolution

on the LR probe images to allow comparison with the HR gallery?

• How does the approach compare against standard learning-based classifiers performing
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comparison in the low resolution feature space?

• How does the approach perform with different feature representations?

• How does the approach perform across different resolutions of the probe images?

• How robust is the approach to variations in the amount of training data and to different

parameter choices?

A. Data Description

Most experiments described in this paper are performed on CMU Multi-PIE face dataset [6].

The CMU Multi-PIE face dataset is based on the popularly used CMU PIE data [24] but has a

much larger number of subjects. The dataset contains images of 337 subjects who attended one

to four different recording sessions which were separated by at least a month. The images are

taken under different illumination conditions, pose and expressions.

For our experiments, we use the frontal images with neutral expression and varying illu-

minations. The images were aligned and cropped using the location of their eyes. For most

experiments, images of randomly selected 100 subjects are used for training and the remaining

237 subjects for testing. Thus, there is no subject overlap across training and test sets. The

aligned face images are down-sampled from the original resolution to the desired high and low

resolutions for experimentation using a standard bi-cubic interpolation technique. For training,

the proposed algorithm needs both HR and LR images of the same subject as side information

to learn the transformation. In our experiments, given an HR training image, we down-sample

and smooth it to generate the LR image of the same subject. Fig. 5 (a) and (b) shows examples

of HR and LR images of three subjects.

We also perform matching experiments on the Surveillance Cameras Face Database [7]. Brief

description of the dataset is provided along with the details of the experiments.

B. Face Representation and Experiment Settings

The proposed approach does not depend on any specific representation. In most experiments,

the standard Principal Component Analysis (PCA) [25] based representation is used to perform

the evaluation. FRGC training data [26] consisting of 366 face images is used to generate the PCA

space. The number of PCA coefficients used to represent the face images is determined based on

the number of eigenvalues required to capture 98% of the total energy. We also drop coefficients
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corresponding to the three largest eigenvalues for robustness to illumination variations. For the

LR images, the FRGC images are first down-sampled to the resolution of the LR images and

then the PCA space is generated. For all experiments in this paper, the kernel mapping φ is set

to identity (i.e., φ(x) = x) to highlight just the performance improvement due to the proposed

learning approach.

Recognition is performed across illumination conditions with images from one illumination

condition forming the gallery while images from another illumination condition forming the

probe set. In this experiment setting, each gallery and probe set contains just one image per

subject. Note that the gallery and probe sets differ in resolution with gallery being in a higher

resolution than the probe images. Unless otherwise stated, all experiments report accuracy in

terms of rank-1 recognition performance. The final performance is given by the average over

all gallery and probe sets (there are 20 different illumination conditions in the CMU Multi-PIE

dataset).

Most experiments include a baseline performance that is obtained by comparing low resolution

probe images with down-sampled (originally high resolution) gallery images. This is denoted by

LR vs LR setting in the reported results. We also report the performance obtained by directly

comparing high resolution version of probe images against high resolution gallery images. This is

denoted by HR vs HR setting in the reported results. Performance for LR vs LR setting is typically

much worse than HR vs HR setting due to the loss of discriminatory information with decrease

in resolution. Since these control experiments compare images of the same resolution, pairwise

similarity/distance for an image pair is directly computed based on the feature representation

(for PCA-based representation, it is simply the Euclidean distance between the corresponding

coefficient vectors).

Training: For training, the weights wij of the transformation matrix are initialized with random

values uniformly over the range [−1,+1]. We now show how the objective function (error)

decreases using the proposed iterative optimization process. The two terms of the objective

function in (7) are separately normalized by the number of terms in each. More specifically, the

first term corresponding to the distance preserving term JDP is normalized by N × (N − 1),

where N is the number of training images, and the second term corresponding to the class

separability term JCS is normalized by the number of images of the same class in the training.

The variation of the combined average of the two with iterations is shown in Fig. 3 (left). The
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value of the parameter λ is set at 0.5. From the figure, we observe that the error decreases quite

quickly and the algorithm converges in around 10 iterations.

For all the experiments (unless otherwise stated), HR gallery images are of resolution 36×30

while the LR probe images are of resolution 12× 10. Examples of HR are LR images at these

resolutions are shown in Fig. 5 (a) and (b) respectively. For choosing the resolution of the HR

images, we computed the recognition accuracy for different resolutions of the gallery images.

Fig. 3 (right) shows that the recognition accuracy increases till about resolution 36×30 and then it

saturates. So after a certain stage, increasing the resolution produces practically no improvement.

Thus we have taken 36 × 30 as the gallery resolution for all the experiments. Though the

recognition performance may not improve much with increasing the resolution beyond 36× 30

using PCA coefficients, the recognition accuracy can possibly improve with higher resolutions

when other representations such as LBP, etc. are used. Since most of the experiments performed

in the paper use PCA coefficients as features, so this analysis is provided for PCA coefficients

only. A similar experiment was performed in [2] to determine the optimal resolution of the HR

gallery images. Unless otherwise stated, the weighting parameter λ is set at 0.5 and weights wij

are initialized in the same manner for all experiments in this paper.

Fig. 3. (Left) Variation of normalized error with iterations during training; (Right) Recognition accuracy for different resolutions

of the input images.

Fig. 4 (Left) shows the distribution of the genuine and impostor similarity scores for the

LR vs LR scenario. The Multi-PIE dataset which contains images of subjects under different

illumination conditions has been used to generate these distributions. The genuine scores have
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been generated from images of the same subject under different illuminations, while the imposter

scores have been generated from images of different subjects. Both the distributions correspond

to 56880 genuine scores and 13423680 impostor scores. We see that the loss of discriminating

information due to reduced resolution results in considerable overlap of the genuine and impostor

score distributions. The corresponding distribution after the proposed MDS-based transformation

is shown in Fig. 4 (Right). To measure the separability of the match and non-match distributions,

we compute the d′ for the two cases as follows [27]

d′ =
|µ1 − µ2|√
(σ2

1 + σ2
2)/2

(19)

Here µ1 and µ2 denote the means and σ1 and σ2 denote the standard deviations of the genuine and

imposter distributions. The d′ values before and after the proposed transformations are 1.85 and

3.47 respectively. Thus, we observe that the proposed approach transforms the images such that

there is considerably more separation between the two distributions which results in improved

recognition accuracy.

Fig. 4. (Left) Genuine and impostor similarity score distributions for the LR vs LR scenario (d′ = 1.85). (Right) Genuine and

impostor similarity score distributions obtained using the proposed approach (d′ = 3.47). As desired the two distributions in this

case are more separated resulting in improved matching performance.

C. Performance Comparison with Super-resolution Techniques

For matching an LR probe with an HR gallery image, one of the most commonly used approach

is to first obtain a higher resolution image from the LR probe image using a super-resolution

technique which is then used for matching with the HR gallery. For comparison, we use three
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different super-resolution techniques to obtain HR images from the input LR probe images. The

three techniques are briefly described as follows

1) Bicubic Interpolation (SR1): Here the output pixel value is just a weighted average of

pixels in the nearest 4-by-4 neighborhood. A standard MATLAB interpolation function is

used for this technique.

2) Sparse Representation based super-resolution (SR2) [14]: Here, the different patches of

the HR image are assumed to have a sparse representation with respect to an over-complete

dictionary of prototype signal atoms. The principle of compressed sensing is used to

correctly recover the sparse representation from the down-sampled input image. For our

experiments, we have used the code and the pre-trained dictionary available from the

author’s website [28].

3) Regression based method (SR3) [15]: Here, the basic idea is to learn a mapping from input

LR images to target HR images from example image pairs using kernel ridge regression.

To remove the blurring and ringing effects around strong edges because of the regression,

a natural image prior which takes into account the discontinuity property of images is used

for post-processing. Code available on the author’s website is used for this technique [29].

Fig. 5(c), (d) and (e) shows examples of HR images created using the three super-resolution

techniques described above. The input LR images are shown in Fig. 5(b) while the actual

HR images are shown in Fig. 5(a). Fig. 6 shows the recognition performance of the proposed

approach along with those of the three different super-resolution approaches on images from the

Multi-PIE dataset. From the recognition performance in Fig. 6, we observe that both standard

LR matching and bicubic interpolation performs poorly with 58.5% and 53.9% average rank-

1 accuracy respectively. The recognition performance of methods SR2 and SR3 are 60.58%

and 61.81% respectively. Though the two state-of-the-art super-resolution methods improve the

matching performance over LR vs LR setting, the improvement is not significant. This may be

partly attributed to the fact that these super-resolution techniques are not customized for a face

matching application. As desired, the proposed approach performs significantly better than all

the super-resolution techniques and its performance is very close to the HR vs HR setting.

August 26, 2011 DRAFT



17

Fig. 5. (a) Comparison with super-resolution algorithms; (a) High resolution images of size 36 × 30; (b) Corresponding LR

images of size 12 × 10; (c) Output images after bicubic interpolation; (d) Output images obtained using sparse-representation

based super-resolution [14]; (e) Output images obtained using regression-based super-resolution [15].

D. Performance Comparison with Classifier-based Approach

Another approach to compare LR probe images with HR gallery images is to down-sample

the gallery images to the resolution of the probe images and then perform matching with the aid

of a learning-based classifier. We use SVM-based classifier for this comparison. We follow the

approach proposed in [30] and train SVM to classify an image pair as belonging to either intra-

personal or extra-personal category. For rigorous evaluation, we use linear and RBF kernels for

this experiment. SVMs are trained using the same sequestered training images of 100 subjects as

done for the proposed approach. The performance of RBF kernel-based SVM depends on gamma

value, which guides the smoothness of decision boundaries. A gamma value of (1/number-of-

features) is typically used as default in most available SVM distributions as is the case with

libsvm package used in our experiments. Along with using the default gamma value, we did

a linear search for the optimal gamma value in the range [0.01 − 10.0]. The results of the

August 26, 2011 DRAFT



18

Fig. 6. Recognition performance comparison with super-resolution algorithms; (from left to right) LR vs LR setting; super-

resolution using bicubic interpolation (SR1); super-resolution using sparse representation [14] (SR2); super-resolution using

regression-based method [15] (SR3); proposed approach and HR vs HR setting.

experiments are shown in Fig. 7. The three SVM performances correspond to linear SVM (SVM

1), SVM with RBF kernel-default gamma (SVM 2) and SVM with RBF kernel-best performance

obtained in a linear search for best gamma value (SVM 3). We observe a recognition accuracy

of 61.79% with default gamma value and the best recognition accuracy of 65.15% (achieved

at gamma = 4.0). As can be seen from the results, though the SVM-based classification in

low resolution domain does improve performance over the baseline (LR vs LR) using RBF

kernel with certain gamma values, the resulting performance is still significantly lower than the

performance of the proposed approach.

Fig. 7 also shows the performance obtained on the Multi-PIE data using Fisherfaces [31] which

uses class information. The subspace for Fisherfaces is generated using the same sequestered

training images of 100 subjects as done for the proposed approach. The performance using

Fisherfaces is 63.93% as compared to 76.54% using the proposed approach.

E. Performance Analysis for Different Face Representations

Though we have used PCA coefficients as face representation in all our experiments so far,

the proposed approach is quite general and can be used with different kinds of features. Here
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Fig. 7. Recognition performance comparison with SVM-based classification and Fisherfaces in low resolution; (from left to

right) LR vs LR matching; SVM 1: SVM with linear kernel; SVM 2: SVM with RBF kernel (default gamma); SVM 3: SVM

with RBF kernel (best performance obtained in a linear search for best gamma value achieved at γ = 4.0); Fisherfaces; proposed

approach and HR vs HR matching.

we test the algorithm with two different kind of features which have been recently used for face

recognition.

1) Linear subspace based feature [32] (LSBF): In this representation, the image vector is first

written in terms of a shape-albedo matrix and the light source direction. An image pixel

h is represented as

h = max(ρ nT
3×1 s3×1, 0) (20)

where ρ is the albedo and n is the unit surface normal vector at the pixel, and s specifies

the direction and magnitude of the light source. By stacking all the d image pixels into a

column vector, we have

hd×1 = [h1, h2, · · · , hd]T = max ([(ρ1 n
T
1 )s, · · · , (ρd nT

d )s]T , 0) = max (Td×3s3×1, 0)

Here the matrix T encodes the product of albedos and surface normal vectors of all the

image pixels and is termed shape-albedo matrix. Assuming that faces belong to the class

of Linear Lambertian objects, the shape-albedo matrix can in turn be written as a linear

combination of its basis matrices. The coefficients of the linear combination are used as
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the representation for performing face recognition. Readers are directed to [32] for further

details of the algorithm.

2) Random Projection [33] (RP) : Recently, random projection has emerged as a power-

ful method for dimensionality reduction that preserves the structure of the data without

introducing significant distortion. Suppose the feature extraction process is given by

y = Rx (21)

where x is the input image, y is the output feature and R denotes the transformation

matrix. In RP, the entries of the transformation matrix R are independently sampled from

a zero-mean normal distribution, and each row is normalized to unit length. Readers are

directed to [33] for the details of the algorithm.

TABLE I

PERFORMANCE WITH DIFFERENT FACE REPRESENTATIONS.

LR vs. LR HR vs. HR Proposed Approach

LSBF 68.63% 87.23% 80.52%

RP 61.10% 81.45% 71.55%

Table 1 shows the recognition performance of the approach with these features. For this

experiment, 100 coefficients are chosen for both LR and HR images for the LSBF feature

representation. The output feature dimension for RP is also chosen to be 100 for both LR and

HR images. From the table, we see that the proposed approach performs significantly better than

LR vs. LR scenario for both kinds of feature representations thus highlighting the effectiveness

of the proposed MDS-based approach for different representations.

F. Performance Analysis For Different Probe Resolutions

In this experiment, we evaluate if the good performance of the proposed approach is consistent

over a wide range of resolutions of the probe images. For this experiment, HR images of

resolution 48× 40 pixels are used for gallery and the resolution of the probe images is varied.

We perform experiments with four different resolutions of the probe images, namely 15 × 12,

12×10, 10×8 and 8×6. Fig. 8(a) shows examples of the HR gallery images, and Fig. 8(b), (c),
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(d) and (e) show the corresponding images for the four different probe resolutions in decreasing

order of resolution.

Fig. 8. Examples images of different resolution. (a) HR gallery images of resolution 48× 40; Probe images of resolution (b)

15× 12 pixels; (c) 12× 10 pixels; (d) 10× 8 pixels and (e) 8× 6 pixels.

The performance of the proposed algorithm along with the performance of LR vs LR matching

is shown in Fig. 9. We observe that the proposed approach can significantly improve the

performance over LR vs LR image matching till probe images of resolution 12 × 10 pixels.

The approach does improve matching performance even for resolution of 8 × 6 pixels but the

improvement is not that significant. This may be due to the fact that LR images at such low

resolution do not have enough discriminibility to help learn the desired mappings.

In this experiment, the proposed method is trained differently for different probe resolutions.

In real applications where the actual resolution is unknown, a rough estimate of the resolution

can be determined based on the distance between the eye centers, as is done for the Surveillance

Quality Images used in Section V-H.
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Fig. 9. Recognition performance of the proposed approach with varying probe resolutions of 8 × 6, 10 × 8, 12 × 10 and

15× 12 respectively. Recognition performance of LR vs LR setting is also shown.

G. Algorithm Analysis with Different Parametric Choices

We now evaluate the robustness of the proposed MDS-based algorithm with different para-

metric choices. Specifically, we analyze the effect of varying output dimension, weighting factor

λ and amount of training data. As before, the following analysis is performed using HR gallery

images of resolution 36× 30 pixels and LR probe images of resolution 12× 10 pixels.

1) Performance with varying output dimension and λ: From Fig. 10 (right), we see that the

performance of the proposed algorithm initially improves with increase in output dimension and

then remains almost constant for dimension greater than around 20. For all our experiments, we

have used m = 30. The parameter λ determines the relative effect of the distance preserving and

the class separability on the total objective function. Higher value of λ implies a higher weight

to the structure preserving term as compared to the class separability term and vice-versa. From

Fig. 10 (left), we see that both the terms contribute to the good performance of the proposed

algorithm. In all experiments, we have used λ = 0.5. In both the figures, the horizontal red

(dashed) line represents recognition performance obtained in LR vs LR setting.

2) Performance with different amounts of training data: Here we analyze the performance of

the proposed learning algorithm with varying amount of training data on the Multi-PIE dataset.
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Fig. 10. Performance analysis of the proposed algorithm with varying λ (Left) and varying output dimension (Right). The

horizontal red (dotted) line represents recognition performance obtained in LR vs LR setting.

For this experiment, we vary the number of subjects used in the training set from 10 to 100 in

steps of 10. The number of test subjects is fixed to be 237. The values of the other parameters

used are m = 30 and λ = 0.5 and they are kept fixed during this experiment. The performance

of the proposed approach for different number of subjects used for training is shown in Fig. 11.

We see that even for number of subjects as low as 20, the proposed approach performs better

than LR vs. LR matching (58.5% average rank-1 accuracy). The recognition accuracy increases

quite fast and saturates above 80 number of subjects. In all the experiments, we have used 100

subjects for training.

H. Evaluation on Surveillance Quality Images

We now test the usefulness of the proposed approach on the Surveillance Cameras Face

Database [7] which contains images of 130 subjects taken in uncontrolled indoor environment

using five video surveillance cameras of various qualities. As in typical commercial surveillance

systems, the database was collected with the camera placed slightly above the subject’s head

and also, the individuals were not required to look at a fixed point during the recordings, thus

making the data even more challenging. The gallery images were captured using a high-quality

photo camera. We use images from four out of the five surveillance cameras since they are close

to frontal, resulting in a total of 520 probe images. Fig. 12 shows sample gallery (top row) and

probe images (bottom row) of a few subjects.

August 26, 2011 DRAFT



24

Fig. 11. Performance analysis of the proposed algorithm with varying amount of training data.

Fig. 12. First Row: Example gallery images; Second Row: Example probe images of the same subjects as the gallery images [7].

For the experiment, we use images of randomly picked 50 subjects for training and the

remaining 80 subjects for testing. Thus there is no identity overlap between the training and test

sets. The experiment is repeated 10 times with different random sampling of the subjects. Fig. 13

shows the Cumulative Match Characteristic (CMC) for this experiment using PCA coefficients

and LBP codes [34] as the input features. Error bars indicate the variation in performance for
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different runs of the experiment. The number of PCA coefficients is determined based on the

number of eigenvalues required to capture 98% of the total energy. For the LBP feature, the

face is divided into 3 × 3 regions and uniform LBP with 8 neighborhood is computed. Here,

we use 3× 3 regions for computing the LBP features since the resolution of the probe images

does not allow for bigger regions. We see that the proposed approach performs significantly

better than the baseline LR vs LR setting both for PCA features as well as for more powerful

representation of faces like LBP. As before, the baseline approach involves down-sampling the

HR gallery images to the same resolution as the LR probe images, and then comparing the

corresponding features.

Fig. 13 also shows the performance of Fisherfaces on this data. Though the Fisherfaces

subspace is learned using the same subset of LR - HR images, the proposed approach performs

considerably better than Fisherfaces.

Fig. 13. CMC obtained using the proposed approach and the baseline approach (for both PCA coefficients and LBP codes as

features) on Surveillance Cameras Face Database [7]. Performance using Fisherfaces is also shown for comparison.
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VI. SUMMARY AND DISCUSSION

In this paper, we proposed a novel approach for improving the recognition performance of

low resolution images as usually obtained from surveillance cameras using Multidimensional

Scaling. The main idea is to learn a transformation of the low resolution probe images and

the high resolution gallery images to a common space such that the distance between them

approximates the distances had these images been of good resolution. The two mappings are

learned simultaneously using iterative majorization technique from HR training images. As shown

in the experimental section, the learned transformations result in better separation of genuine

and impostor score distributions that is the basis of the improved performance of the proposed

algorithm. The desired transformations are learned during off-line training. The matching process

involves simple projection of the test images using the learned transformations.

The proposed approach makes it possible to robustly match faces across resolution differences

without the need of any down-sampling or super-resolution step. Extensive experimental evalua-

tion shows the usefulness of the proposed approach. The proposed approach is compared against

several approaches that include 1) simple down-sampling of gallery images for matching, 2)

super-resolution of probe images using three different approaches, and 3) SVM-based classifica-

tion approach. Results of the conducted experiments also show that the proposed approach can

be used with different facial characterizations and is useful across a range of low resolutions.

Though all the experiments have been performed on facial images, the proposed approach is

very general and can be applied to any domain where such learning is feasible.
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