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Abstract

We demonstrate a method for evaluating edge detector performance based on receiver operating
characteristic (ROC) curves. Edge detector output is matched against ground truth to count
true positive and false positive edge pixels. A detector’s parameter settings are trained to give
a best ROC curve on one image and then tested on separate images. We compute aggregate
ROC curves based on one set of fifty object images and another set of ten aerial images. We
analyze the performance of eleven different edge detectors reported in the literature.

Keywords: performance evaluation, experimental computer vision, edge detection, compari-
son of algorithms.
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1 Introduction

The need for sound experimental performance evaluation in computer vision is now widely
recognized [7, 11, 39]. This paper focuses on evaluating the performance of edge detection
algorithms. True positive and false positive edge pixels are counted based on comparison to
manually-specified ground truth for real images. Performance is summarized using receiver
operating characteristic (ROC) curves. We use adaptive sampling of edge detector parameter
space to drive a train-and-test evaluation using a total of sixty real images.

The methodology and results presented are novel. No other work uses adaptive parameter
sampling to construct empirical ROC curves for pixel-level performance evaluation, or has used
so many real images, or has compared such a broad selection of detectors. The results indicate
that relatively few of the more modern approaches offer any general performance advantage over
the Canny detector. However, Heitger’s “suppression and enhancement” detector does appear
to offer a clear improvement. The results also indicate that edge detector performance rankings

do not vary significantly between the types of imagery considered.

2 Related Work

A number of researchers have considered the problem of evaluating the performance of
edge detectors. Table 1 summarizes some important elements of various related works. Related
works can be categorized in broad ways that highlight elements of our approach that are unique
relative to previous work and that we believe are important.

Some previous efforts can be categorized as “theoretical” or “analytical,” in the sense that
they are based solely on mathematical models of detectors and images [28]. The current state
of analytical modeling of images, edges and detectors appears to be too primitive to allow
confidence that this approach will produce results that are meaningful for real images.

A larger group of works is based on using synthetic images [1, 13, 14, 23, 27, 36, 38, 41].
Using synthetic images allows easy and precise specification of the ground truth edge locations.

Evaluation can then be based on comparing detected edges to ground truth. However, the



Authors, Images Used Comparison Parameter # of
reference In Evaluation Metrics Tuning Detectors
Deutsch & Fram 5 synthetic: ramp at TP,FP-based subjective three
[13] 1978 0, 15, 30, 45, 60 deg. metrics selection

Bryant & Bouldin (a) 1 real (a) relative grade (a) not practical five
[8] 1979 (b) with 1 GT edge (b) absolute grade (b) not described

Abdou & Pratt theoretical model & 2 TP,FP-based none seven
[1] 1979 synth. images w. ramps | metrics

Kitchen & Rosenfeld | 2 synthetic, but continuity & fixed sampling to seven
[24] 1981 applicable to real thinness metric optimize metric

Eichel & Delp one synth. Pratt f.o.m. not three
[14] 1981 (one real) (subjective) described

Ramesh and Haralick | none — theoretical ROC curve heuristic two
[28] 1992 edge/noise model sampling

Venkatesh & Kitchen | 2 synthetic: 1 vert. TP,FP counts and fixed sampling to four
[38] 1992 and 1 diag. ramp edge | width, loc. metrics optimize metric

Spreeuwers & van der | 1 synthetic, with “average risk,” based | fixed sampling to three
Heijden [35] 1992 Voronoi tesselation on TP/FP metrics optimize metric

Strickland & Chang 1 synthetic, with 6-part qualitative and none five
[36] 1993 vertical step edge TP,FP-based metric

Jiang et al. 10/80 range images TP,FP-based none one
[22] 1995 with manual GT measures

Kanungo et al. 1 synthetic, with contrast threshold not two line
[23] 1995 vert. edge + noise detection curve described detectors
Cho et al. 1 real image, statistical metrics of none two
[10] 1995 without GT confidence/likelihood

Zhu 1 synth. & 2 real, metrics for width none one
[41] 1996 no pixel-level GT and connectivity

Palmer et al. (a) 1 synth. with GT, (a) line param. error | fixed sampling to one
[27] 1996 (b) 5 real without GT (b) contrast metric optimize metric

Salotti et al. 2 real images, TP,FP-based fixed sampling to two
[30] 1996 with manual GT metrics optimize metric

Heath et al. 28 real images, human ratings of selection from five
[19] 1997 no pixel-level GT edge goodness 64 settings

Shin et al. real image sequences structure-from- adaptive sampling five
[31] 1998 motion results to min SFM error

Shin et al. 36 real images ROC curve of 2-D adaptive sampling five
[32] 1999 object recog results for best ROC

Forbes & Draper one synthetic ROC curve of adaptive sampling three
[18] 2000 TP,FP pixels for best ROC

this work 60 real images, ROC curve of adaptive sampling eleven

with manual GT

TP,FP pixels

for best ROC

Table 1: Summary of some related work on methods for edge detector evaluation.
Images used does not count variations such as adding different levels of noise, “# of detectors”
does not count different implementations of the same detector.




synthetic images typically used contain only simple geometric patterns with added Gaussian
noise. The essence of the complexity of a real image is that it typically contains edges of many
different types, scales, and curvatures. Therefore, synthetic images are often far too simple to
give confidence in the value of the results. Other researchers have expressed essentially the same

“... any conclusions based on these comparisons of synthetic images have little value.

opinion —
The reason is that there is no simple extrapolation of conclusions based on synthetic images
to real images!” [40]. Also, in our own previous related work we found that all of the edge
detectors considered had essentially equivalent, and nearly perfect, performance on a simple
synthetic image [19]. However, when those same detectors were compared using real images in
a human rating experiment, significant differences were found.

Recently, Forbes and Draper have performed a study that uses the same basic ROC frame-
work that we use, but with synthetic images generated from a graphics package [18]. Because
this work relates so closely to ours, we will return to it in detail in the discussion section.

Another group of works uses metrics that reflect qualitative properties such as smoothness,
continuity, thinness, and so forth [10, 24, 25, 27, 41]. Since these metrics do not require ground
truth, they are readily applicable to real images. However, such qualitative metrics do not
always appropriately reflect performance. For example, in the case of one smoothness metric
[24], using a larger o for the Canny detector leads to greater smoothness. But greater smoothing
distorts edges near vertices and displaces edge location. Thus edge detector parameter settings
that maximize such ground-truth-free metrics can result in poor edges. In a somewhat similar
way, the “relative grading” metric [8] scores a detector according to how well it agrees with
a suite of reference detectors. This avoids the need for specifying ground truth, but penalizes
detectors that do not repeat the failings of the reference detectors! Metrics based on qualitative
properties of detected edges may well be useful as additional secondary metrics, but they do not
seem appropriate as primary performance metrics.

Only a few other works have used ground truth specified for real images. Bryant and

Bouldin’s [8] “absolute grading” metric used a single ground truth edge specified in an aerial



image. One of our previous efforts looked at edge detection in range images and reported true
positive (TP) and false positive (FP) statistics for comparison to ground truth on a set of 10
range images [22]. Salotti et al. used ground truth specified for two real images and reported
(TP,FP) statistics [30]. This group of works is more closely related to our proposed method
than the others mentioned above. However, there are two important differences between these
approaches and our own approach.

One difference is that these approaches do not ensure that the parameters of each detector
are equally well tuned. Various parameters in different detectors may have different ranges of
allowed values, and different sensitivity in terms of changes in the detected edges. To account
for this, the performance evaluation method must incorporate a step that samples the parameter
space of each edge detector in an adaptive manner to find the parameter settings that represent
the best performance for that detector.

A second difference is that simple (TP,FP) statistics alone may lead to an “apples and
oranges” comparison. For example, a comparison of the Deriche and Sobel detectors found that
the Deriche had slightly fewer missing edges than the Sobel, but at the cost of slightly more
spurious edge pixels [30]. Since tuning a detector to increase the TP score generally also results
in a higher FP score, this sort of result is difficult to evaluate. What is needed is to evaluate
detectors over a range of the same TP values. This is the essence of the concept of the receiver
operating characteristic (ROC) curve. Sound comparisons are more appropriately made using
ROC curves rather than isolated (TP,FP) performance points.

In summary, the current state of the art in analytic modeling of images/detectors and the use
of synthetic images seem inadequate. Similarly, by themselves, ground-truth-free “qualitative”
properties of detected edges seem inadequate. The most useful method of evaluation would be
based on ground truth for real images. Ours is the only approach to make such an evaluation

at the pixel level by adaptively sampling edge detector parameter space to generate well-tuned

ROC curves.



Shin et al. have explored task-oriented, rather than pixel-level, frameworks for edge detector
evaluation [31, 32]. One approach evaluates detectors by the accuracy of the results when the
edge map is used as input to a line-based structure-from-motion algorithm [31]. This work uses
real images, but does not use pixel-level ground truth and does not involve ROC curves. Another
approach evaluates edge detectors based on the results of a 2-D object recognition algorithm
applied to a set of real images [32]. This work also does not use pixel-level ground truth. Such
higher-level, task-based evaluations are certainly important, but are by nature more narrowly
focused than our approach. In the future, we hope to explore the degree to which our pixel-level

performance metrics can predict the results of task-level evaluations.

3 Experimental Materials

The raw experimental materials for this work are a set of edge detector implementations, a set
of images, and manually-specified ground truth overlays for the images. This section describes

each of these elements.

3.1 The Edge Detectors

The edge detectors considered here are those by Sobel, Canny [9], Bergholm [2], Sarkar and
Boyer [33], Heitger [20], Rothwell et al. [29], Black et al. [4], Smith and Brady [34], Iverson and
Zucker [21], Bezdek et al. [3], and Tabb and Ahuja [37]. The various detectors were selected as
representative of approaches that are historically important and/or represent different interesting
technical approaches. One important constraint was that we decided to evaluate a post-Canny
detector only if an implementation was available that could be traced to the developer of the
algorithm. We feel this is important in order to avoid questions of whether an implementation
reasonably represents the algorithm developer’s intent ([16, 15, 17]). Pointers to source code for
most of the implementations can be found on our lab web page.! As used in our experiment,

each detector read pgm format intensity images and output a single-pixel-wide binary edge map

'http://marathon.csee.usf.edu/edge/edgecompare main.html.



in pgm format. Each detector has one or more parameters that were used to tune the sensitivity
of the results. The ranges of parameter values sampled for each detector are listed in Table 2.

The Sobel detector is one of the earliest approaches to edge detection and is is included as a
sort of historical reference point. The Sobel implementation was written at USF. Thresholding
the Sobel edge strength image typically produces “thick” edges. Since we want to compare
detectors based on single-pixel-wide binary edge maps, our Sobel implementation was extended
to use the Canny non-maxima suppression and hysteresis routines. Thus the implementation
has two parameters 1T}; and 17,.

The Canny implementation was re-written at USF based on an implementation that traces
back to the University of Michigan. It uses standard non-maxima suppression and hysteresis
routines. It has three parameters: o to control the amount of smoothing, and 7}; and 7}, to
control the hysteresis.

The Bergholm implementation was adapted from the Candela package available from KTH
Stockholm. The Bergholm detector follows an “edge focusing” principle. First, “significant”
edges are found with an edge strength threshold, 7', and smoothing at a coarse scale, op;. Then,
the locations of these significant edges are tracked to a finer scale, o;,. Thus this detector has
three parameters.

The Rothwell detector was translated into C at USF, based on C++ source obtained from
the developer. This detector seeks to improve on the Canny by having better topology, in the
sense of connectedness of edge chains. First, the image is smoothed using a Gaussian of size
o and gradient information is computed. Then all pixels with gradient strength greater than
T, and which pass a non-maxima suppression step, are considered as initial edge pixels. Then
all pixels with gradient strength greater than a x N; where NV; is the gradient strength of the
nearest initial edge pixel, are added to the set of edge pixels. In this way, there is a gradient
threshold that may vary over the image. Because the edges may now be thick, this is followed

with an edge thinning algorithm. The detector has three parameters: o, T and «.



| Technique | Parameter 1 | Parameter 2 | Parameter 3
Sobel non-max and T, = 0.0-1.0 | Tp; = 0.0-1.0 -
1970 hysteresis added
Canny filter, non-max T, = 0.0-1.0 Ty = 0.0-1.0 | o = 0.5-5.0
[9], 1986 and hysteresis
Bergholm scale-space Obegin = 0.5-5.0 | Oeng = 0.5-5.0 | T' = 0.0-60.0
[2], 1987 focusing
Sarkar optimal zero- 8 = 0.5-5.0 T, = 0.0-1.0 | T}; = 0.0-1.0
[33], 1991 crossing filter
Heitger suppression and o = 0.5-5.0 T = 0.0-50.0 -
[20], 1995 enhancement
Rothwell Canny with o = 0.5-5.0 T =0.0-60.0 | a = 0.0-1.0
[29], 1995 | topology added
Iverson logical - Np = 4-24 T = 0.0,0.05 -
[21], 1995 linear
Smith univalue segment | 7T = 1.0-50.0 - -
[34], 1997 assimilating
Ahuja integrated edges o, lifetime - -
[37], 1997 and regions
Black robust aniso- 0.1 —-3.0x o, — -
[4], 1998 | tropic diffusion
Bezdek | geometric Takagi- | 7 = 0.05-4.95 T = 0-255 -
[3], 1998 Sugeno 4

Table 2: Ranges of Parameter Values for the Detectors Analyzed.

The Sarkar-Boyer implementation was obtained from the developers. The detector is based
on an optimal infinite impulse response (IIR) filter that responds to zero-crossings. One param-
eter, 3, controls the scale of the filter in a manner analogous to the ¢ in the Canny detector,
and a hysteresis step is applied, controlled by 7;, and T;.

The Heitger implementation was obtained from the developer. This detector uses even and
odd symmetric filters in a “suppression and enhancement” approach. For each orientation of
the filter, a response is obtained for an assumed step (line) edge. Then the first and second
derivatives of the response in a direction orthogonal to the filter orientation are used to suppress
responses that do not match that of the assumed edge type and enhance responses that do match.

A number of parameters are available in the Heitger implementation. The results presented here



are obtained adapting only the o for the filter size and the threshold response magnitude 7.
Initial experiments showed that also adapting the parameter for the number of filter orientations
gave only a small improvement in performance, and at the cost of greatly increased computation
[12]. Other parameters were left at their default values.

The detector developed by Smith and Brady has the acronym SUSAN, for “Smallest Univalue
Segment Assimilating Nucleus.” It computes an edge strength measure based on the number of
pixels within a local window whose intensity value is within 7" of that of the center pixel. It also
computes an edge direction based on the center of mass of these pixels, and uses this to perform
non-maxima suppression. Thus the only parameter of the SUSAN detector is the threshold, 7.
The detector uses either a 3x3 window or a larger approximately circular window. The authors
recommend use of the larger window [34]. However, in our comparative evaluation of the two
windows on a set of 10 object images and 10 aerial images, using the 3 x 3 window gave better
results on 18 of the 20 images and approximately equivalent performance on the remaining two
images. Thus all results presented here use the 3 x 3 window. The implementation obtained
from the University of Oxford web page was modified to directly output the single-pixel-wide
binary edge map.

The Iverson and Zucker detector uses a “logical / linear” approach that is similar in concept
to Heitger’s approach. Logical rules are applied in combining the response of linear filters in
determining edges. The implementation of this detector obtained from the authors outputs
an edge strength image in postscript format. We convert the format to pgm and apply non-
maxima suppression to obtain single-pixel wide edges. One parameter is used to control the
number of directions (Np) considered, and another parameter to threshold the edge strength.
The implementation can detect positive and negative lines as well as edges, but was set to detect
only edges in our experiments.

The robust anisotropic diffusion detector of Black et al. was implemented at USF, and
results on a sample image compared with those of the author’s implementation. This detector

uses a robust statistic, the median absolute deviation (MAD), to compute a parameter, o, that
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controls the diffusion operation and the threshold for declaring edge pixels. Since the MAD is
computed from the image, this might be considered to be a “parameterless” detector. However,
the sensitivity of the detector can be adjusted by scaling the computed value of o.. Inflating
o, decreases the number of edges found, and deflating o, increases the number of edges. In our
experiments, the number of iterations of the anisotropic diffusion is kept fixed at 100. Initial
experiments indicated that so long as the number of iterations is “large,” the value of the
MAD has much greater influence on performance. Because this detector produces thick edges, a
Canny-style non-maxima suppression routine was added in order to get single-pixel-wide edges.

Results for the integrated edge/region detector of Tabb and Ahuja were obtained by trans-
ferring image files to the University of Illinois to be processed there. The edge detection result
files were transferred back to USF. One of the more interesting aspects of this detector is that
it finds edges as the closed boundaries of regions of “similar” pixel values. This property is
not true of many edge detectors, and may be important for some applications. This detector
looks at each pixel in terms of the attraction force from it to other similar pixels within some
spatial region. At the boundary of a region, adjacent pixels have force vectors that point in
approximately opposite directions. The size of the spatial region is adapted at each pixel based
on the magnitude and stability of the force vector. The implementation produces result files for
a fixed set of nine values of one parameter (the “o, lifetime,” see [37]).

The Bezdek et al. detector approaches edge detection as a sequence of four operations:
image conditioning, feature extraction, blending, and scaling. It emphasizes understanding
the geometry of the feature extraction and blending functions, and uses the Sobel kernels for
features. The implementation obtained from the authors produces an edge strength image,
and so non-maxima suppression was added to this implementation to produce a single-pixel-
wide binary edge map. Two parameters were used with this detector: 7 controls the blending

function steepness at the origin, and 7" is a threshold on edge strength.
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3.2 The Images

We used a total of sixty images in our experiments. Of these, fifty represent the general
domain of generic object recognition from grayscale images, and ten represent the domain of
aerial image analysis. To investigate whether detector rankings vary based on type of imagery,
we report results separately for the two sets.

Each of the fifty images representing the domain of generic object recognition contains a
single object approximately centered in the image, appearing essentially unoccluded, and set
against a natural background for the object. The set of images contains both indoor (39) and
outdoor (11) scenes, and both natural (8) and man-made (42) objects. These images were
originally acquired as color images using a 35-mm camera and placed onto Photo CD by a
commercial lab. Gray scale versions of the images were obtained from the three color planes
using the formula: intensity = 0.299 x red + 0.587 x green + 0.114 x blue. The images were
then individually cropped to approximately 512 x 512 in size, and to have the object of interest
approximately centered in the image.

The ten aerial images were sampled from the DARPA-IU Fort Hood aerial image data set.
Some contain essentially vertical views and some contain more oblique views. All of the aerial
images are 8-bits per pixel, and are approximately 512x512. These were cropped from larger
original images in the DARPA Fort Hood aerial image data set.

Due to space considerations, the complete set of images is not presented in figures in this
paper. However, all of the images and the ground truth templates used in this work may be
obtained by down-loading the tar file available from our lab web page. The versions of the
images viewable on the web page are in jpeg format, but the tar file contains the pgm format

versions.

3.3 Ground Truth for the Images

Ground truth (GT) was manually created for each image. The GT overlay for an image

is another image of the same size, in which black represents edge, gray represents no-edge and
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white represents “don’t care.” The GT is created by specifying edges that should be detected
and regions in which no edges should be detected. Areas not specified either as edge or as no-
edge default to don’t-care regions. This makes it practical to specify G'T for images that contain
regions in which there are edges but their specification would be tedious and error-prone (for
example, in a grassy area). However, our method for constructing ROC curves does require that
each image have a substantial amount of both edge pixels and no-edge region. Figure 1 shows,

for each domain, an example image and its GT.

Contiy al o iy
L1 l‘: 11

!
i

Figure 1: Example “Object” and “Aerial” Images and Their Ground Truths.

If a detector reports an edge pixel within a specified tolerance of an edge in the GT, then
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it is counted as a true positive (TP), or a “Matched GT Edge Pixel.” If a detector reports
an edge pixel in a GT no-edge region, then it is counted as a false positive (FP). Edge pixels
reported in a don’t-care region do not count as TPs or FPs. The ROC curve for a given image
and edge detector is created from the (TP,FP) points representing different parameter settings
of the detector.

If two different people specify G'T for an image, or the same person specifies GT on separate
occasions, the results will generally differ in their details. If this level of variation in the details
of the GT caused the performance ranking of edge detectors to vary, then this approach to
performance evaluation would have little value. Figure 2 presents the results of a check on this
question. Five different GTs are shown for the same image, along with the ROC curve obtained
using each GT. The ROC curves were created by the method to be described later. As plotted,
a curve that comes closer to the lower left corner is better. The first two GTs were created by
person A on separate occasions, taking approximately 30 minutes for the first and approximately
60 minutes for the second. The next two GT's were created by person B on separate occasions,
again taking approximately 30 minutes and 60 minutes, respectively. The last GT was created
by person C taking approximately 90 minutes.

It is readily apparent that the details of the different GTs vary. However, each GT has a
substantial amount of both edge and no-edge. The first GT has approximately 13,000 edge
pixels and 41,000 no-edge pixels, the second has 18,000 edge pixels and 66,000 no-edge pixels,
the third has 8,000 edge pixels and 76,000 no-edge pixels, the fourth has 13,000 edge pixels
and 65,000 no-edge pixels, and the fifth has 10,000 edge pixels and 112,000 no-edge pixels.
The important point to note is that the relative ranking of the different detectors is essentially
unchanged across the different GTs. The absolute position of the ROC curves on the plots
varies, but the relative ordering of the results is stable. For each GT, the Heitger shows the
best result, followed by the Canny and Bergholm, then the Smith, and then the Sobel. This
indicates that the level of variation in performance ranking due to varying details in the GT is

small comparison to the performance differences in between the detectors. In essence, once the
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set of training data for creating the ROC curves reaches 8,000 or more edge pixels and 40,000 or
more no-edge pixels, minor changes to the GT seem to have no substantial effect on the relative

ranking of the detectors.

4 Methods

There are three important elements of the experimental method. One is the comparison of
edge detector output for an image to the corresponding GT to obtain a (TP,FP) count. The
second is the algorithm for adaptively sampling the parameter space of an edge detector to
obtain the training ROC curve for a given image. The third is the method for aggregating a set
of ROC curves.

4.1 Comparing Detected Edges To Ground Truth

A core piece of software for the experiments is the “comparison tool.” The inputs are an
edge map and a GT image, and the output is a (TP,FP) count. The algorithm used is as follows.
Each edge pixel in the detected edge map is evaluated in comparison to the GT. If the edge
pixel falls in a no-edge region, then the FP count is incremented by one. If the edge pixel lies
within T},q¢n pixels of a GT edge, then the TP count is incremented by one, and the matched
pixel in the GT is marked so that it cannot be used in another match. The T},4: threshold
for tolerance in matching a detected edge pixel to GT allows detected edges to match the GT
even if displaced by a small distance. This is visible in the GT images as a small band of white
around each black edge. The experiments reported here use a value of T},4cn = 3.

In general, a detected edge pixel may have multiple potential matches to a GT edge pixel.
We take the closest-distance match within the 7T}, area. Draper and Forbes used the farthest-
distance match in their implementation of our evaluation method [18]. Liu and Haralick looked
at this particular matching problem from a theoretical perspective [26]. In our experience, these
variations in the matching algorithm do change the the absolute TP and FP counts slightly, but

do not affect the performance ranking of the detectors.
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In order for the (TP,FP) count to be consistent and unambiguous, the GT should not contain
specified edge pixels that are within 7}, pixels of the border of a no-edge region. This
condition is easy to enforce. If a detected edge pixel falls in a don’t-care region and is not
matched to a GT edge, then it does not contribute to either the TP or the FP count.

A problem arises in comparing detectors when they report results differently around the
border of the image. For example, one detector may report results at all pixel locations in the
original image, whereas another detector may report no results for a several-pixel-wide border
around the edge of the image. The G'T' overlays were created to be the same size as the original
image. If a detector leaves a border around the edge of the image where it reports no results,
then it naturally cannot match any GT edges specified in that region. Also, it could not generate
any FPs in portions of no-edge region along the border. Thus the (TP,FP) counts for the two
detectors would not be directly comparable. Fortunately, the effect of this problem is generally
small. A one-pixel border around a 512 x 512 image represents less than 0.8% of the total image
area. Of the detectors considered here, the only one for which this could present a substantial
problem is the Ahuja, which reports no result for a ten-pixel border of the original image. For
this detector, the compare tool was used to generate (TP,FP) counts only over the area of the
image where the detector reports results. Thus its results are actually computed over a smaller

image area than the results for the other detectors.

4.2 The Training ROC Curve for an Image

For a given detector and a given image, a training ROC curve is found by adaptively sampling
the detector’s parameter space. The adaptive sampling terminates when it has found parameter
settings that represent the family of best TP/FP tradeoffs. The adaptive sampling is done as
follows. Initially, the specified range of each parameter is sampled by four uniformly-distributed
values. If the detector has P parameters, this results in 47 points in the parameter space. Each
edge map is compared to the GT to obtain a (TP,FP) count for the corresponding parameter
point. The resulting set of (TP,FP) points is plotted on a graph with “% Unmatched GT Edges”

on the X axis and “% FP” on the Y axis (see Figure 3). In this format of the ROC curve, the
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ideal point is (TP,FP) = (0,0) and an ROC curve that lies to the lower left of another curve is
better.

While each parameter setting generates a point in the ROC space, not all points necessarily
lie on the ROC curve. A point appears on the ROC curve only if no other point has both a
smaller % Unmatched GT and a smaller % FP. The upper left panel of Figure 3 shows a plot
of 112 parameter points of the Canny edge detector applied to the airplane image of Figure 1.
In this case, only a small percent of the sampled points actually lie on the ROC curve. This is
because the Canny detector has three parameters and some combinations of parameter values
result in poor performance tradeoffs. For detectors that have only one parameter, typically all
of the sampled parameter values do generate (TP,FP) points that lie on the ROC curve.

Next, possible refinement in the sampling of each parameter is considered. Each parameter
is individually sampled at the mid-points between current sample points. For example, if the
detector has 3 parameters, then the initial sampling is 4 x 4 x 4 and the first set of refinements
considered is 7 x 4 x 4,4 x 7 x 4, and 4 x 4 x 7. The refinement that results in the greatest
improvement in the ROC curve is kept. This adaptive refinement of the parameter sampling
continues for at least two iterations, and until the improvement in the ROC curve falls below
5% of the area under the curve (AUC). At this point, the ROC curve is a good approximation
to the ideal ROC curve. Figure 3 shows the ROC curve at stages of the refinement in parameter
sampling.

The empirical ROC curve as we derive it generally has endpoints that fall short of the upper
left (Unmatched GT = 0, FP = 1) and the lower right (Unmatched GT = 1, FP=0) corners
of the plot. For most detectors and images, the TP level does not ever reach 1. Also, for most
detectors and images, the FP level falls to zero in the range of Unmatched GT = 0.8 to 0.6.
The upper-leftmost point on the ROC curve generally represents an extreme parameter setting
for the detector; for example, the lowest edge strength threshold value considered. Also, it is
generally found on the initial coarse sampling of the parameter space. The area under a given

ROC curve is calculated over whatever range of TP values the sample points span.
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A training ROC curve was computed in this way for each of the sixty images, for each of
the detectors other than the Ahuja. For the Ahuja detector, we received edge image results
representing a sampling of nine pre-determined values of the single parameter in the detector.
The edge images were received in a format twice the size of the original image, with edges marked
“between” original pixels. The over-size edge images were converted to the original image size

at USF, and ROC curves constructed.

4.3 Test ROC Curves

We can consider the construction of ROC curves in a train and test paradigm. The ROC
curve found by adaptive search of a detector’s parameter space with a given image is a training
ROC curve based on that image. The family of parameter settings that lie on the training ROC
curve for a given image can be used to apply that detector to a different image to obtain a test
ROC curve. For a detector with more than one parameter, the training ROC curve for a given
image should be better than any of the ROC curves obtained when that image is used as a test
for other images’ training curves. For a detector with a single parameter, the difference between
its training and test curves would come only from sampling the one parameter at a different
granularity.

The use of a train and test paradigm is important when comparing detectors that have
different numbers of parameters. It is possible for detectors with more than one parameter to
rank lower in test results than in training results. However, our experience with the detectors
evaluated to date is that the difference between a given detector’s training and test results is

generally small relative to the differences between detectors.

4.4 Aggregate ROC Curves

For a data set of IV images, we have N different training ROC curves. For each training
ROC curve, we can have N — 1 different test ROC curves. Thus a fifty-image dataset produces

50 x 49 = 2450 test ROC curves, and a ten-image dataset produces 10 x 9 = 90 test ROC curves.
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The total number of test ROC curves is too great to consider each individually for subjective
visual evaluation. However, we can create an aggregate curve from a set of curves. The aggregate
ROC curve is created by sampling each of the individual ROC curves at the same fixed set of
TP values. In general, this requires linear interpolation between two empirically-obtained ROC
points on a curve. The aggregate FP value is then simply the average of the individual FP
values. The aggregate test ROC curve visually represents the average performance that can be
expected from a detector by tuning it on one image and then using the tuned detector on a new
set of images.

One complication to be aware of in interpreting the aggregate ROC curve is that not all
individual ROCs contribute to the aggregate ROC across the entire range of TP values. Some
individual GTs are “hard” for some detectors, in that the detector may not be able to obtain
100% of the TPs even at a very high level of FPs. Thus all the points on an aggregate ROC
curve may not represent an average over the same number of individual curves. This can lead to
a “spike” on the aggregate curve where the number of individual curves being averaged changes.

This is evident, for example, on the aggregate curves for the Sobel detector in Figure 5.
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Figure 2: Performance Rank and Variation in the Ground Truth Specification.
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5 Results

To have a better frame of reference for interpreting the meaning of different points on the
ROC curves, it is useful to consider some example edge maps. Figure 4 presents sample edge

maps for two different ROC points for the Heitger and Sobel detectors. Sample edge maps are

|, ‘“, e T

(e) Sobel at. ‘9-0% ™

Figure 4: Sample Edge Maps for Heitger and Sobel.

presented for each detector at approximately 10% and 4.5% Unmatched GT (90% and 95.5%
TP, respectively). The Heitger edge maps represent (10.5% Unmatched GT, 0.04% FP) and
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(4.6% Unmatched GT, 0.6% FP). The Sobel edge maps represent (9.9% Unmatched GT, 1.5%
FP) and (4.6% Unmatched GT, 34.9% FP). At 10% Unmatched GT both detectors produce
edge maps that seem subjectively reasonable, although the Heitger edge map is obviously better.
The edge map for each detector gets subjectively worse in going from 10% to 4.5% Unmatched
GT, due to the presence of more FP edges. However, the Heitger edge map still seems to be
of reasonably quality, whereas the Sobel seems to have deteriorated to the point of becoming
useless.

It is necessary to look at the experimental results from several viewpoints in order to make
carefully considered conclusions. One view of the results is to compare the aggregate train and
test ROC curves for the detectors. In evaluating these curves, it is important to also consider the
numbers of images on which each detector was able to match the highest percentages of GT. In
understanding the significance and repeatability of the differences between edge detectors, it is
useful to compare the area under the training ROC curves across the individual images. Lastly,
the relative computing time required by the detectors may be a useful secondary consideration.

The next subsections present these various results.

5.1 Aggregate Train and Test Curves

The aggregate training curve represents the average performance of a detector when it is
carefully tuned on each individual image. The aggregate training ROC curve for the fifty object
images is obtained by averaging data from the fifty individual training curves. The aggregate
training curve for the ten aerial images is obtained by averaging data from ten individual training
ROC curves. These aggregate training curves are presented in Figure 5. Because of the number
of detectors evaluated, they are presented in two groups. Group I is the Canny detector plus
the five others whose ROC curve is similar to or slighter better than that of the Canny. Group
IT is the Canny detector plus the five others whose ROC curve is not as good as that of the
Canny. It is apparent that the relative ranking between detectors is much the same across the

object and aerial datasets.
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The aggregate training curves represent an ideal level of image-specific tuning. Aggregate
test curves would better represent the expected performance in most applications. The aggregate
test ROC curve represents the average performance that can be expected from a detector after
it is carefully tuned on one image and then applied across a set of images from the same domain.
The aggregate test ROC curves are presented in Figure 6. The aggregate test curves again show
that there is little difference in the relative ranking of the detectors across the two datasets.
Several of the detectors appear to offer some improvement over the Canny, primarily at the
highest values of % GT matched. However, recall that these are aggregate curves. Some of the
detectors do not achieve the highest % GT matched on all images, as shown in Figure 7 below.

There is essentially no difference in the relative ranking of detectors from the training curves
to the test curves. This may seem unusual. However, recall that for the one-parameter detectors
there will be essentially no difference between their training and their test curves. Thus the
differences that occur between the training and test comparisons are mainly that the performance
of multi-parameter detectors (e.g., the Canny) loses ground to the one-parameter detectors (e.g.,
the Black). While this does occur, the effect is generally not large enough to change the relative

ranking of detectors.

5.2 Frequency of Matching Highest Percent of GT

As mentioned earlier, the aggregate ROC curve for a detector is generally an average over a
different number of images at different levels of % GT matched. This is because the detectors
vary in the maximum percent of the GT edges that they can find in an image. Thus it is
important to know which detectors could most frequently achieve the highest levels of % GT
matched. The graphs in Figure 7 summarize this information. The Y axis represents the number
of images, and the X axis represents the highest level of GT matched. Ideal performance on
this measure would be indicated by a straight line across the top of the plot. Several points are
apparent from looking at the graphs. One, there is again little difference in the relative rankings
of the detectors between the object image dataset and the aerial image dataset. Two, we can

tell that all of the detectors are able to match at least 84% of the specified GT edges at some
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level of FPs. We can also tell that the Sobel had the greatest trouble matching high levels of %
GT. Lastly, the Heitger was able to reach the highest level of GT matched (99.75%) on every
one of the images.

Considering the aggregate test ROC curves in the context of the % GT matched curves,
it seems clear that the Heitger outperforms the other detectors at the highest levels of % GT
matched. Also, some of the other detectors’ apparent advantage over the Canny in the aggre-

gated ROC curves is seen to be based on averages over different sets of images.

5.3 Test for Statistical Significance

Formulating a test for statistical significance of differences between algorithms based on
ROC curves requires care. The Area Under the ROC Curve (AUC) is the traditional metric
for comparison. However, since our ROC curves result from a parameter-training process, it
is not clear that the assumptions underlying traditional AUC statistical tests are valid. We
formulate a simple statistical test based on computing the AUC over a standardized range of
% Unmatched GT for all detectors and images, and comparing the frequency with which one
detector obtains a lower AUC than another.

One issue that arises in computing the AUCs is the exact range of % Unmatched GT to be
used. The results presented here use the range of 0.25% to 25%. There is little reason to use a
broader range than this because most detectors and images cannot match more than 99.75% of
the GT at any level of FP, and most can match up to 75% of the GT edges at nearly 0% FP.

Another issue that arises is how to artificially extend the ROC curve in the case where it
does not naturally reach 0.25% Unmatched GT. Let the upper-leftmost point on the ROC curve
be (TP=X,FP=Y). Then add the points (TP=X,FP=25%) and (TP=0.25%,FP=25%) to finish
the curve. The FP level of 25% for the extension is somewhat arbitrary. It needs to be high
enough that the detector is effectively penalized for not naturally detecting the higher levels
of GT, but if it is too high then the extension area dominates the comparison. Given that

single-pixel-wide edges are used, at most one half of the pixels in a no-edge region could be
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labeled as edge pixels. This implies a theoretical limit of FP = 0.5, but in unusual cases, the
implementations of some detectors do allow FP to exceed 0.5.

Using the AUCs for a set of images, we formulate the statistical test as follows. The sign
test can be used to check for statistical significance without requiring the assumption that the
differences between two detectors’ AUCs follow a normal distribution [5]. The null hypothesis
is that detector A is equally likely to have a higher or a lower AUC than detector B when both
are trained on the same image. Under this assumption, there is less than a 1 in 2" chance that
detector A would generate a lower AUC than detector B on each of a set of N images. The
expected number of times for detector A to yield a lower AUC than detector B on the set of 50
images is 25. The variance is 12.5 and the standard deviation is 3.54. Thus a value outside the
range of 17 to 33 (two standard deviations from the mean) is sufficient evidence to reject the
null hypothesis at the 0.05 level. For a set of 10 images, a value outside the range of 2 to 8 is
evidence of a statistically significant result.

Data for this statistical test is presented in Table 3 separately for the fifty object images
and the ten aerial images. Obviously most of the entries in these tables represent statistically
significant results. An example statement that could be made from these results would be —
the Heitger detector, in comparison to any of the other detectors except for the Iverson on the
aerial images, produces a better AUC (computed as defined here) for a statistically significant
percentage of the images. Note that the pattern of relative performance between detectors here
largely agrees with the subjective impression obtained from the plots of aggregate ROC curves.
Note also that the pattern of relative performance does not vary significantly with the type of

imagery.
5.4 Speed, Parameter Sampling and Number of ROC Points

We observed a difference of about 100 to 1 in execution times of the detectors. (Because
the Ahuja detector was not run at USF, we do not have estimates of execution time for it.)
The fastest detectors were the Sobel detector and Smith and Brady’s SUSAN detector. The

slowest detectors were Black’s robust anisotropic diffusion detector and Iverson and Zucker’s
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LogLin detector. However, there is no reason to believe that all of the implementations were
created with equal attention to efficiency, and so the relative execution times provide only general
information.

We also observed a factor of about 100 to 1 between the minimum and maximum number
of points examined in the the adaptive search of the detectors’ parameter spaces. See Table 4
for the numbers. There appears to be no strong correlation between this index and the ranking
of detector performance.

There is a modest factor of approximately 3 to 1 between the minimum and maximum
average number of points on an ROC curve (other than the Ahuja detector). Again, there is no

clear correlation to performance rank.

5.5 Similarity of Detectors’ Edge Maps

It is potentially valuable to consider the G'T found or missed in common by different detectors.
This could reveal that some detectors make complementary mistakes, or point to situations in
which all detectors fail. Consider results from detectors A and B at the points nearest to 20%
Unmatched GT on their respective ROC curves. Each detector matches some 80% of the GT
edges. Therefore 60% of GT edges must be matched by both detectors. On the remaining 40%,
the two detectors may range from complete agreement to complete disagreement. For any pair
of detectors, we can calculate the percent of the GT pixels not required to be matched by both
detectors that actually are matched by both. This can vary between 0% and 100%, and is an
indication of the degree to which the detectors naturally find the same edges. Tables 5 and 6
summarize this data for the two sets of images.

These tables suggest that there is fairly high agreement between detectors in terms of the
GT edges matched. This argues against there being a large advantage to combining multiple of
these detectors into a hybrid detector. A visual depiction of this point is given by Figure 8. This
figure shows the result of a logical AND of the GT matched by ten of the detectors (the Ahuja
is not included) at about 80% GT Matched for the airplane image. Figure 9 focuses on two

detectors, the Canny and Heitger, and shows a G'T edge map coded by color. Yellow represents
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GT edge pixels matched by both detectors, blue represents GT matched only by Heitger, red
represents GT matched only by Canny and black represents GT not matched by either. From
initial inspection of such images such as those in Figures 8 and 9, there does not appear to be

a common theme to the GT edges matched by one detector but not the other.
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Figure 5: Aggregate Training ROC Curves for Object and Aerial Datasets.
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Results for the Dataset of 50 Object Images

‘ | Heit | Iver | Cann | Bezd | Berg | Blac | Roth | Sobe | Smit | Sark |
*

Heitger
Iverson 46
Canny 46 31 *
Bezdek 49 29 24 *
Bergholm | 49 | 36 39 39 *
Black 50 40 34 35 24 *
Rothwell | 50 45 49 48 49 40 *
Sobel 50 47 49 49 48 44 45 *
Smith 50 49 50 50 49 48 40 9 *
Sarkar 50 48 50 47 48 43 39 9 30 *
Ahuja 45 38 33 34 32 31 22 10 16 12

*

Results for the Dataset of 10 Aerial Images

‘ ‘ Heit ‘ Tver ‘ Cann ‘ Bezd ‘ Berg ‘ Blac ‘ Roth ‘ Sobe ‘ Smit ‘ Sark ‘
*

Heitger

Iverson 5 *

Canny 9 10 *
Bezdek 9 8 4

Bergholm | 10 10 8 8
4

Black 10 8 5 2 *
Rothwell 10 10 10 10 10 9
Sobel 10 10 10 10 10 9 8 *
Smith 10 10 10 10 10 9 4 2
Sarkar 10 10 10 10 10 9 10 6
Ahuja 9 7 6 6 5 6 3 1 1 0

Table 3: Relative AUC Comparison Across Training ROCs.
Entries in the tables indicate the number of times that the column-named detector had an AUC
better than the row-named detector.
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average # of sample average # of
Detector points in training | points on ROC
Canny 1439 38
Bergholm 3783 46
Sarkar 1317 43
Rothwell 4261 50
Heitger 2902 55
Sobel 248 40
Black 68 34
Bezdek 833 46
Iversion 2005 47
Smith 39 17
Ahuja 9 9

Table 4: Number of Parameter Settings and Points on ROC Curve.

| Berg | Cann | Heit | Blac | Roth | Sobe | Smit | Sark | Iver | Bezd |

Bergholm | * - - - - - - - - -
Canny 73 * - - - - - - - -
Heitger 78 74 * - - - - - - -
Black 76 72 78 * - - - - - -
Rothwell | 72 69 4 | T1 * - - - - -
Sobel 64 61 65 68 67 * - - - -
Smith 66 63 69 73 69 68 * - - -
Sarkar 66 59 60 59 60 54 50 - - -
Iverson 76 63 68 69 64 63 57 57 * -
Bezdek 66 72 77 80 73 68 65 58 75 *
Ahuja 67 66 68 67 62 54 52 53 55 62

Table 5: % Free Agreement In Matched GT Edge Pixels: 50 Object Images.
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‘ Berg ‘ Cann ‘ Heit ‘ Blac ‘ Roth ‘ Sobe ‘ Smit ‘ Sark ‘ Iver ‘ Bezd ‘

Bergholm | * - - - - - - - - -
Canny 78 * - - - - - - - -
Heitger 83 79 * - - - - - - -
Black 79 74 70 * - - - - - -
Rothwell 72 71 66 73 * - - - - -
Sobel 67 64 59 70 69 * - - - -
Smith 73 68 64 81 74 72 * - - -
Sarkar 61 63 56 60 64 o7 54 * - -
Iverson 71 66 65 76 69 69 68 59 * -
Bezdek 78 72 68 83 74 71 74 o8 79 *
Ahuja 67 66 68 67 62 54 52 53 959 62

Table 6: % Free Agreement In Matched GT Edge Pixels: 10 Aerial Images.

Figure 8: GT Edges Matched By 10/10 Detectors at 80% GT Matched.
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Figure 9: GT edge pixels matched by Canny/Heitger.
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6 Summary and Discussion

We have demonstrated a framework for evaluation of edge detector performance using em-
pirical ROC curves. The framework uses real images, manually-specified ground truth, adaptive
sampling of edge detector parameter space, and a train-and-test paradigm. Results are presented
for eleven detectors using a set of fifty object images and a set of ten aerial images. Results
include aggregate train and test ROC curves, the percent of images for which the highest level
of GT edges was matched, and the percent of images for which better AUCs were obtained.

It is important to consider that substantial differences in edge detector performance emerge
only at higher TP levels. Consider an application that requires matching only 75% of the GT
edges. This can be achieved at a level of 0% FPs, as FPs are counted in this framework, by
almost any of the detectors on almost all of the images. However, if an application requires
matching 90% or greater of the GT edges, there are large differences between detectors.

Overall, the Heitger detector appears to offer the highest level of performance. The relative
ranking of detectors appears to be insensitive to minor details of the GT specification, provided
that there are substantial amounts of both edge and no-edge in the GT. The relative ranking
of detectors is also stable across images and type of imagery. Results were shown for object
imagery and aerial imagery. The subject matter of the object imagery could be subdivided into
indoor/outdoor or man-made/natural and the detector performance rankings would remain
essentially the same. The highest- and lowest-ranked detectors are the most stable, with the
order of the middle-ranked detectors interchanged more frequently. As an example, one of the
more unusual images and set of ROC curve results is shown in Figure 10. The image is of a
natural, outdoor scene containing an alligator. It can be challenging to specify the GT for this
type of image. Note the that Sobel detector does not result in the worst ROC curve for this
image. Instead, it ranks ahead of several other detectors. However, the order of the highest
ranking detectors is still typical of general result. Overall, the results suggest that selection of

a “best” edge detector can be a fairly general decision.
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6.1 Comparison to Results of Forbes and Draper

Forbes and Draper have presented results of a similar ROC-style approach to edge detector
evaluation [18]. They used their own implementation of an ROC framework that follows our
approach as described earlier [6, 12]. However, they use simulated images in order to explore
the effects of parameters of the image acquisition process. Because they used simulated images,
they were also able to use an edge / no-edge GT and avoid the don’t-care marking used in our

ground truth. An example image and its ground truth from [18] are shown in Figure 11.

Figure 11: Example synthetic image and its GT from [18].

Forbes and Draper report results that differ from ours on several important points [18].
Compared to our results, they report that (1) relative rankings of edge detectors are not nearly
as consistent as we found, (2) Smith and Brady’s SUSAN detector generally achieves better
performance relative to other detectors than we found, (3) extreme parameter settings are much
more often selected for use in the Canny edge detector in their framework, and (4) performance
of an edge detector can vary substantially with factors such as the resolution of the image. Our
two research groups pursued substantial correspondence and collaboration in order to identify
the cause(s) of the disparate results. Several factors were identified.

One factor is that we used the SUSAN detector with its optional smaller (3x3) mask, whereas

the results in [18] use the default 37-pixel circular mask embedded in a 7 x 7 window. This
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mask leaves a larger border around the image boundary in which no edge pixels are detected.
When TP/FP results are counted over the whole image, with the two masks detecting edges
over different subsets of the whole image, the larger mask generally gives better performance.
This is because its performance is effectively boosted by being unable to report false positives
for a larger border around the image. When TP /FP results are counted over the same image
area, for which both masks report edge detection results, the smaller mask generally gives better
performance.

Another factor is that our parameter search processes differed in one detail. Our framework
requires that the search go at least two steps. That is, the search cannot stop at a 4 x 4 x 7
step, but must explore at least one further step. (This implementation detail was not reported
in the description of our framework in [6, 12].) Forcing the search process to take at least two
iterations gives better ROC curves for some images.

Several additional factors center on the nature of the synthetic images in [18]. The image /
ground truth pair in Figure 11 show several properties that make it special relative to the real
image data used in our study. One property is the simple foreground / background nature of the
scene, resulting in all of the GT edges forming one connected group. In principle, a Canny-like
hysteresis procedure could start with just the one highest-strength edge pixel and still trace out
edges to match all of the ground truth. Thus a value of 1.0 for the high hysteresis threshold in
the Canny detector becomes a plausible choice. Another property is that there are relatively
few GT edge pixels. The average number of GT edge pixels in this sequence of images in Forbes
and Draper study is approximately two orders of magnitude less than in our real image data.
Another special property lies in the approach to marking GT edges. As shown in Figure 11,
their GT contains only edges that are due to object geometry. It does not include edges due to
lighting and shadows, even though the strength of some lighting/shadow edges in the image may
be stronger than that of some object edges. Thus the GT mixes the question of distinguishing
the cause of the edge (object geometry versus lighting) with the presence of an edge. All of the

detectors evaluated were designed simply to detect edges, not to distinguish their cause.
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Forbes and Draper have run a modified version of their implementation on a more complex
synthetic image, without shadow edges, and using the smaller mask for the SUSAN detector.
In this limited experiment their results appear to largely agree with ours, in the sense that
their method produces stable rankings of detectors that match the rankings produced by our
method. We still favor the use of real images and the three-valued ground truth, as we feel that
it more explicitly forces one to confront the messy issues that are essential to the utility of the
results. However, it appears possible that the synthetic-image approach of Forbes and Draper

could reasonably be used to make valid evaluations of detector performance.
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6.2 Relative Importance of Kernel and Post-Processing

One element of folklore in the edge detection community is that the traditional Sobel detector
augmented with the non-maxima suppression and hysteresis of a Canny detector would perform
about the same as the Canny detector. Our results show that this is not true. Our imple-
mentations of the Sobel and the Canny use the same non-maxima suppression and hysteresis
routines, and the Canny performs much better. Figure 12 shows sample edge maps for the two

detectors using comparable parameter settings. For both detectors, a low hysteresis threshold

Figure 12: Example corresponding edge maps from Sobel (left) and Canny (right).

of 0.5 and a high hysteresis threshold of 0.94 are used. For the Canny, the o value used is 0.5,
roughly corresponding to the 3 x 3 mask size of the Sobel. Note that the Canny edges appear
subjectively to be better organized into smooth, continuous contours. This suggests that the
smoothing step and / or the particular filter shape are important in addition to the non-maxima

suppression and hysteresis routines.
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6.3 Suggested Use of This Framework

Evaluation of a proposed new edge detector could be done using all of the sixty images, and using
the full train-and-test methodology. However, considering the results of this evaluation, it seems
that a meaningful performance comparison can generally be done at much less computational
cost. A comparison of the aggregating training ROC curves and the AUCs for a subset of
the images should be sufficient in most cases. A full train-and-test evaluation might be more
appropriate for a detector with a large number of parameters. A larger number of images
might be more appropriate if it was important to determine statistical significance of similarly-
performing detectors.

The complete set of images, ground truth, and software for creating ROC curves is contained
in the tar file available from our web site. The implementation also includes scripts to compare

a proposed new detector to the Heitger based on a subset of the images.
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