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Abstract—Researchers have suggested that the ear may have advantages over
the face for biometric recognition. Our previous experiments with ear and face
recognition, using the standard principal component analysis approach, showed
lower recognition performance using ear images. We report results of similar
experiments on larger data sets that are more rigorously controlled for relative
quality of face and ear images. We find that recognition performance is not
significantly different between the face and the ear, for example, 70.5 percent
versus 71.6 percent, respectively, in one experiment. We also find that multimodal
recognition using both the ear and face results in statistically significant
improvement over either individual biometric, for example, 90.9 percent in the
analogous experiment.

Index Terms—Biometrics, multimodal biometrics, face recognition, ear
recognition, appearance-based recognition, principal component analysis.
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1 INTRODUCTION

WHILE good face recognition performance has been reported under
certain conditions, there is still a great need for better performance in
biometrics appropriate for use in video surveillance. Possible
avenues for improved performance include the use of a different
source of biometric information, and/or the combination of
information from multiple sources. One other possible biometric
source is the ear. Iannarelli performed important early research on a
manual approach to using the ear for human identification [1].
Recent works that explore computer vision techniques for ear
biometrics include those of Burge and Burger [2] and Hurley et al.
[3]. In particular, Burge and Burger assert that the ear offers the
promise of similar performance to the face:

Facial biometrics fail due to the changes in features caused by
expressions, cosmetics, hair styles, and the growth of facial hair as
well as the difficulty of reliably extracting them in an unconstrained
environment exhibiting imaging problems such as lighting and
shadowing....Therefore, we propose a new class of biometrics for
passive identification based upon ears which have both reliable and
robust features which are extractable from a distance...identification
by ear biometrics is promising because it is passive like face
recognition, but instead of the difficult to extract face biometrics,
robust and simply extracted biometrics like those in fingerprints can
be used. ([2], p. 275)

In the context of Iannarelli’s earlier work and the current popularity
of face recognition research, this assertion that the ear could offer
improvedbiometricperformance relative to the facedeserves careful
evaluation. The experiments reported in this paper are aimed at
1) testing the hypothesis that images of the ear provide better
biometric performance than images of the face and 2) exploring
whether a combination of ear and face images may provide better
performance than either one individually. The results reported here

follow up on those reported in an earlier study [4]. Using larger data
sets andmore rigorous assurance of similar relative quality in the ear
and face images, we obtain somewhat different results than in the
earlier study. In the experiments reported here, recognition
performance is essentially identical using ear images or face images
and combining the two for multimodal recognition results in a
statistically significant performance improvement. For example, in
one experiment the rank-one recognition rates for face and ear were
70.5 percent and 71.6 percent, respectively, whereas the correspond-
ingmultimodal recognition ratewas90.9percent. Toourknowledge,
ours is the only work to present any experimental results of
computer algorithms for biometric recognition based on the ear.

2 “EIGEN-FACES” AND “EIGEN-EARS”

Extensive work has been done on face recognition algorithms
based on principal component analysis (PCA), popularly known as
“eigenfaces” [5]. The FERET evaluation protocol [6] is the de facto
standard in evaluation of face recognition algorithms, and
currently uses PCA-based recognition performance as a baseline.
A standard implementation of the PCA-based algorithm [7] is used
in the experiments reported here. This implementation requires the
location of two landmark points for image registration. For the face
images, the landmark points are the centers of the eyes. Manually
identified eye center coordinates are supplied with the face images
in the Human ID database. For the ear images, the manually
identified coordinates of the triangular fossa and the antitragus [1]
are used. See Fig. 1 for an illustration of the landmark points.

The PCA-based approach begins with using a set of training
images to create a “face space” or “ear space.” First, the landmark
points are identified and used to crop the image to a standard size
located around the landmark points. In our experiments, original
face images are cropped to 768� 1; 024 and original ear images to
400� 500. In these images, one pixel covers essentially the same size
area on the face or the ear. Next, the cropped images are normalized
to the 130� 150 size used by the PCA software. At this point, one
pixel in an ear image represents a finer-grain metric area than in a
face image. The normalized images are masked to “gray out” the
background and leave only the face or ear, respectively. The face
images use the mask that comes with the standard implementation
[7]. For the ear images, we experimented with several different
levels of masking in order to tune this algorithm parameter for good
performance. Last, the image is histogram equalized. The eigenva-
lues and eigenvectors are computed for the set of training images,
and a “face space” or “ear space” is selected based on the
eigenvectors associated with the largest eigenvalues. Following
the FERET approach, we use the eigenvectors corresponding to the
first 60 percent of the large eigenvalues and drop the first
eigenvector as it typically represents illumination variation [6]. This
approach uses the same dimension of face space and ear space, 117,
in this case (Table 1). Another approach is to use whatever number
of eigenvectors accounts for some fixed percent of the total variation,
resulting in a different dimension of face space and ear space.Which
of these approaches is used does not substantially affect our
conclusions, as is shown later in the paper.

The set of training images consists of data for 197 subjects, each of
whomhad both a face image and an ear image taken under the same
conditions at the same image acquisition session. These imageswere
acquired at the University of South Florida (USF) between August
2000andNovember 2001.Asubject’s imagesweredropped fromour
study if either the faceor earwas substantially obscuredbyhair, if the
subject wore an earring or analogous face jewelry or if either image
had technical problems. Someof the gallery andprobe images for the
first experiment were acquired at USF during the same time frame.
Additional gallery and probe images for the first experiment, and all
gallery andprobe images for the second and third experiments,were
acquired at the University of Notre Dame in November 2002.

There is a separate (gallery, probe) data set for each of three
experiments. The gallery images represent the “watch list,” that is,
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the people who are enrolled in the system to be recognized. A probe
image is an image given to the system to be matched against the
gallery. Each of the three experiments represents a single factor
being varied in a consistent way between the gallery and probe. For
the day variation experiment, 88 subjects had both an ear and a face
image taken under the same conditions in one acquisition session
and then another ear and face image taken under the same
conditions on a different day. The face images are the standard
FERET “FA” (“normal expression”) images [6]. The ear images are of
the right ear. For each subject, the earlier image is used as the gallery
image and the later image is used as the probe image. This
experiment looks at the recognition rate when gallery and probe
images of a subject are obtained on different days, but under similar
conditions of pose and lighting.

For the lighting variation experiment, 111 subjects had an ear
and a face image taken under the same conditions in one session
and then another face and ear image taken in the same session, but
under a different lighting condition. The standard lighting uses
two side spotlights and one above-center spotlight and the altered
lighting uses just the above-center spotlight. The images taken
under the standard lighting are gallery images and the images
taken under altered lighting are probe images. This experiment
looks at the recognition rate when gallery and probe images of a
subject are obtained in the same session and with similar pose, but
under distinctly different lighting.

For the pose variation experiment, 101 subjects had both an ear
and a face image taken under the same conditions in one
acquisition session and then another face and ear image taken at
22.5 degree rotation in the same acquisition session. The images
taken from a straight-on view are the gallery set, and the images
taken at a 22.5 degree rotation are the probe set. This experiment
looks at the recognition rate when gallery and probe images of a
subject are obtained in the same session and with the same
lighting, but with a different pose. An example of the gallery and
different probe conditions for one subject appear in Fig. 2.

Not all subjects attended all acquisition sessions and some
subjects were dropped from some experiments after image quality
control checks and, so, the three experiments havedifferent numbers
of subjects. The same standard face and ear images of some subjects
may appear in the gallery set for each of the three experiments.
However, since the probe sets are the changed conditions, there are
no images in common across the three probe sets.

3 EXPERIMENTAL RESULTS: FACE VERSUS EAR

The null hypothesis for these experiments is that there is no
significant difference in performance between using the face or the
ear as a biometric, given 1) use of the same PCA-based algorithm
implementation, 2) the same subject pool represented in both the
gallery and probe sets, and 3) controlled variation in one parameter
of image acquisition between the gallery and probe images. The
recognition experiment is to compute the cumulative match
characteristic (CMC) curve for the gallery and probe set and to
consider the statistical significance of the difference in rank-one
recognition rates.

The baseline is the day variation experiment. This experiment
looks at the recognition performance for gallery and probe images
taken under the same conditions but on different days. The
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TABLE 1
A Number of Eigenvectors Used to Create the Eigenspace

Fig. 2. An example of the gallery and probe face and ear images used in this study.

Fig. 1. Illustration of points used for geometric normalization of face and ear
images. The triangular fossa is the upper point on the ear image and the antitragus
is the lower point.



CMC curves for face and ear recognition are shown in Fig. 3. The

CMC curves are computed in two ways. One uses the 197-image

training set that has no subjects in common with the gallery and

probe sets. The other uses the gallery set as the training set. There is

no substantial difference in the results between the two training

methods. Numbers reported for statistical significance tests are

taken from the results using the 197-image training set. Note that the

ear and face performance represented in the CMC curves is quite

similar, with the curves actually crossing at some point. The rank-

one recognition rates of 70.5 percent for face and 71.6 percent for ear

1162 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 9, SEPTEMBER 2003

Fig. 3. Recognition performance comparison between face and ear. (a) Face and ear recognition performance in the day variation experiment. (b) Face and ear
recognition performance in the lighting variation experiment. (c) Face and ear recognition performance in the pose variation experiment.



are not statistically significantly different at the 0:05 level using a

McNemar test [8].
Relative to the baseline experiment, the lighting variation

experiment looks at how a lighting change between the gallery

image and the probe image affects the recognition rate. Performance

for either the face or the ear is slightly lower than in the baseline

experiment. Similar to the baseline experiment, there is relatively

little difference between the CMC curves for the face and the ear,

especially at lower ranks. The rank-one recognition rates of
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Fig. 4. Recognition performance of face, ear, and combined face-ear. (a) Face combined with ear recognition performance in the day variation experiment. (b) Face

combined with ear recognition performance in the lighting variation experiment. (c) Face combined with ear recognition performance in the pose variation experiment.



64.9 percent for face and 68.5 percent for ear are not statistically
significantly different at the 0:05 level using a McNemar test.

Relative to the baseline experiment, the pose variation experi-
ment looks at how a 22.5 degree rotation to the left between the
gallery and the probe images affects the recognition rate.
Performance, in this case, is much lower than for either the baseline
or the lighting change experiment. There also appears to be a larger
gap between face and ear performance than in the other two
experiments, but still the difference is not statistically significant. In
any case, performance at this low of a level is not likely to be
practically meaningful.

Overall, the results of our experiments do not provide any
significant evidence for rejecting the null hypothesis that the face
and the ear have equal potential as the source for appearance-
based biometric recognition. Of course, there may still be some
biometric algorithm, other than PCA, for which one of the face or
the ear offers significantly better recognition performance than the
other. Also, there may be particular application scenarios in which
it is not practical to acquire ear and face images that meet similar
quality control conditions. For example, in an outdoor sports
context many people may wear sunglasses or in a formal indoor
event many people may wear earrings.

4 EXPERIMENTAL RESULTS: FACE PLUS EAR

MULTIMODAL BIOMETRIC

Another experiment was performed to investigate the value of a
multimodal biometric using the face and ear images. A very simple
combination technique isused. Thenormalized,maskedear and face
images of a subject are concatenated to form a combined face-plus-
ear image. This was done with the data from each of the three
experiments and Fig. 4 shows the resulting CMC curves. The
CMCcurves for thedayvariation and lighting variation experiments
suggest that the multimodal biometric offers substantial perfor-
mance gain. The difference in the rank-one recognition rates for the
day variation experiment using the 197-image training sets is
90.9 percent for the multimodal biometric versus 71.6 percent for
the ear and 70.5 percent for the face. A McNemar’s test for
significance of the difference in accuracy in the rank-one match
between themultimodal biometric andeither theear or the face alone
shows that multimodal performance is significantly greater at the
0:05 level. Of the 88 probes, themultimodal and the ear are correct on
62, both incorrect on 6,multimodal only is correct on 18, and ear only
is correct on 2. The difference between themultimodal biometric and
either the face or the ear alone is again statistically significant in the
lighting change experiment, 87.4 percent rank-one recognition rate
versus 64.9 percent or 68.5 percent, for the face or ear, respectively.
However, because theoverallperformance is so low, thedifference in
the pose change experiment is not statistically significant. These

results suggest that it is worthwhile to explore the combination of
multiple biometric sources that could be acquired in a surveillance
scenario.

5 DISCUSSION

Overall, our experimental results suggest that the ear and the face
may have similar value for biometric recognition. Our results do not
support a conclusion that an ear-based or face-based biometric
should necessarily offer better performance than the other. Of
course, this is not the same as proving that there is no useful
biometric algorithm for which one would offer better performance.
Research into new algorithms that take advantage of specific
features of the ear or the face may produce improved performance
using one or the other.

Our results do support the conclusion that a multimodal
biometric using both the ear and the face can out-perform a
biometric using either one alone. There is substantial related work
in multimodal biometrics. For example, Hong and Jain [9] used
face and fingerprint in multimodal biometric identification, and
Verlinde et al. [10] used face and voice. However, use of the face
and ear in combination seems more relevant to surveillance
applications. We are aware of just one other work specifically on
multimodal biometrics appropriate to surveillance, this one using
face and gait [11]. This would seem to be an especially rich and
promising area of research. It might be expanded to include other
biometric sources, such as face, ear, and gait. It might also be
expanded to investigate more sophisticated methods of combining
evidence from the different biometrics.

The results presented so far are based on using the same fixed
number of eigenvectors for both the face and ear space. It is also
possible to create the spaces based on the same percent of energy,
allowing the number of eigenvectors to vary as appropriate.
CMC curves computed using both spaces for the day variation
experiment appear in Fig. 5. Performance is essentially the same
whether the spaces are created based on a fixed number of
eigenvectors in this case, or a floating number of eigenvectors
corresponding to a fixed percent of total energy. (The authorswould
like to thank the anonymous reviewer who suggested inclusion of
this comparison.)

The PCA-based face recognition approach has been informally
tuned through use over time and, inevitably, an accumulation of
expertise is embedded in the standard implementation [7]. Several
options were explored in an attempt to ensure that the use of the
PCA approach was appropriately tuned for use with ear images.
For example, five different levels of masking for the ear images
were tried. Also, a total of four landmark points were marked on
each ear image and experiments were run with a different pair of
landmark points. The results reported here are for the best level of
masking and pair of landmark points.
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Fig. 5. Performance based on different selection of eigenvectors in face and ear spaces.



Our results are obtained using the PCA-based algorithm,
whereas Burge and Burger [2] and Hurley et al. [3] each propose a
different approach. Thus, one possible reservation to our conclusion
is that it may be dependent on the particular algorithmic approach.
However, we know of no experimental results in the literature for
either of the other proposed approaches. In our own efforts to
implement one of the approaches, we found the basic ear
description used to be rather unstable. The description is an
attributed graph obtained from the Voronoi diagram of the edges
detected in the ear image [2]. One problem is that the edges detected
from the ear image can be very different for relatively small changes
in camera-to-ear orientation or in lighting. The edges detected in an
image of the ear arise mostly from occluding contours, rather than
from surface discontinuities or surface-marking-like effects. Thus,
the edges will naturally be substantially different if there are
changes in orientation or lighting.

We have tried to make the face versus ear aspect of this
experiment “fair” in the sense of having equivalent quality control
rules for each type of image. For example, all images are of subjects
not wearing earrings or any face jewelry and all images had no
substantial amount of the ear or face obscured by hair. These
restrictions are in one sense equal in terms of quality of images
used in the experiments, but are not necessarily equal in the sense
of being equally likely to be true of images acquired in practice. For
example, many more subjects were dropped from the experiments
due to earrings, than due to face jewelry. Also, it may be more
likely for hair to obscure the ear than the face. The question of
whether the ear or face is more likely to be cleanly imaged, in
practice, seems to depend on a number of cultural, social, and
environmental factors, and is not dealt with in this study.

The results presented in this paper differ somewhat from those in
the paper by Victor et al. [4]. Results of that study showed ear-based
recognition performance was significantly lower than face-based
performance. The image data sets in that study had less control over
the covariates such as earrings, hair over ears, exact lighting setup
over time, etc., and this variation in image quality confounded with
the covariates under study. However, the results in that studymight
not be “wrong” so much as reflect the average quality of images
likely to be acquired in real applications. Examples of images
exhibiting such issues appear in Fig. 6. Even though only a small
number of images in the previous study exhibited such quality
control issues, these often resulted in misrecognition and, so,
excluding them effectively increases the measured performance for
the ear biometric.

The experimental materials used in this study are available to
other researchers. The materials are distributed as a UNIX tar file
containing the raw and masked images, the version of the PCA

implementation used, and scripts that can be run to replicate the
basic results. See www.nd.edu/~cvrl/ for information on obtain-
ing the experimental materials.
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Fig. 6. Examples of (gallery, probe) image pairs not used in this study.
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