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Abstract 
This paper presents a method of evaluating unsu- 

pervised texture segmentation algorithms. The control 
scheme of texture segmentation has been conceptual- 
ized as two modular processes: [l) feature computation 
and (2) segmentation of homogeneous regions based 
on the feature values. Three feature extraction meth- 
ods are considered: gray level co-occurrence matrax, 
Laws’ texture energy and Gabor multi-channel filter- 
ing. Three segmentation algorithms are considered: 
fuzzy c-means clustering, square-error clustering and 
split-and-merge. A set of 35 real scene images with 
manually-specified ground truth was compiled. Perfor- 
mance is measured against ground truth on real images 
using region-based and pixel-based performance met- 
rics. 

1 Introduction 
One recent review categorized texture segmentation 

techniques into feature-based methods, model-based 
methods and spatial/spatial-frequency methods and 
structural methods [21]. Feature-based methods char- 
acterize a texture as a homogeneous distribution of 
feature values such as gray level co-occurrence ma- 
trix (GLCM) and Laws’ texture energy (LAWS). Even 
though both GLCM and LAWS were originally pro- 
posed in the context of texture classification, many 
researchers have applied them to texture segmentation 
[14, 23, 6, 5 ,  15, 41. Spatial/spatial-frequency meth- 
ods use a technique to generate a group of features 
from filtered images computed from frequency infor- 
mation at localized regions, such as Gabor functions 
or wavelet models [16]. Gabor multi-channel filtering 
(GABOR) has been selected for this study. Gabor fil- 
tering has been applied to the texture segmentation 
problem by many researchers [9, 2, 171. Related com- 
parison studies are reviewed in the next section. Few 
rigorous comparison and evaluation studies have been 
performed in unsupervised texture segmentation. The 
purpose of our study is to rigorously compare and eval- 
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uate the performance of different unsupervised texture 
segmentation techniques. 

1.1 Review of Texture Segmentations 
Previous studies have commonly used “mosaic77 im- 

ages, where region boundaries are artificial. A tradi- 
tional source of texture samples is Brodatz’s album 
[3]. The reason for using mosaic images is that the 
texture boundaries are precisely known, which allows 
for precise quantitative error evaluation [8]. But, such 
simple boundaries usually do not occur in real scenes. 

Texture feature extraction techniques have been 
compared in several studies. Du Buf et al. com- 
pared seven different texture feature extraction meth- 
ods (GLCM, fractal, Michell’s, Knutsson’s, Laws’, 
Unser’s, curvilinear integration) [8]. This is the clos- 
est study to ours, in terms of comparing unsupervised 
segmentation algorithms. It is an important study 
since they attempted to  evaluate issues of image seg- 
mentation and boundary accuracy comparison in a 
quantitative framework. The mean boundary error 
is used as a criterion. They used several mosaic im- 
ages with 2 regions. Ojala [19] conducted a compara- 
tive study of performance of texture features. This 
study includes gray level difference, Laws’, center- 
symmetric covariance, local binary patterns, and com- 
plementary feature pairs. They measure the perfor- 
mance of each feature by nearest neighbor classifica- 
tion. Experiments with random samples with size 32 
x 32 or 16 x 16 showed that local binary patterns per- 
formed best. Pichler et al. [20] introduced pyramidal 
and tree-structured wavelet transform and compared 
with adaptive Gabor filtering. Results are evaluated 
by comparing the segmented images with those ob- 
tained with multichannel Gabor filters. Four differ- 
ent wavelet transformation techniques in texture seg- 
mentation are evaluated in [lo]. They selected ten 
wavelet filters to  determine how well textures are dis- 
tinguished. Fuzzy c-means clustering is used to obtain 
a segmentation based on computed texture features. 
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Figure 1: A scheme used in this study 

2 Methods and Materials 
2.1 Gray level co-occurrence matrix 

Gray level co-occurrence matrix (GLCM) was in- 
troduced by Haralick [12]. A co-occurrence matrix 
describes how often one gray level appears in a spec- 
ified spatial relationship to another gray level. The 
entry at  (it j )  of the GLCM indicates the number of 
occurrences of the pair of gray levels i and j which 
are a distance d apart along a given direction 6 .  The 
values of d and 0 are parameters for constructing the 
GLCM. 
2.2 Laws’ texture energy 

Laws’ texture energy (LAWS) combines predeter- 
mined one-dimensional kernels into various convolu- 
tion masks [18]. The output image of the convolution 
process is considered as an “energy image”, followed 
by a texture energy transformation in which each pixel 
at the center of a local window (Z(i , j ))  is replaced 
by the mean of absolute value in the filter window 
( f ( i , j ) )  as follows: 

where n is size of mask. 
2.3 Gabor multi-channel filtering 

In this study, we use multi-channel filtering with 
Gabor functions (GABOR) as proposed by Jain and 
Farrokhnia [17]. The set of channels was designed with 
even-symmetric Gabor filters, cosine part only, as an 
impulse response, defined as: 

where uo is radial frequency of filter and o,pY are the 
space constants of the Gaussian envelope along the x 
and y axes, respectively [17]. Feature images are ob- 
tained by submitting each selected filtered image to a 
nonlinear transformation and computing a measure of 
energy around each pixel. Then, the average absolute 
deviation from themean in small overlapping windows 
is computed. 
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2.4 Quad-tree split-and-merge 
’ Split-and-merge (SPMG) takes the entire feature 

image as an initial input and successively divides into 
four sub-regions based on the degree of homogeneity 
of feature values in sub-regions. Once a splitting has 
been accomplished, a merging process is then per- 
formed with more restricted threshold values (TF). 
Pairs of regions which are spatial neighbors are merged 
if following test is satisfied: 
I M ~ ~ F R , ,  F R ~ ,  F R ~ ,  FR~)- 

where FR, indicates feature value of region Ri. 
2.5 Clustering 

Clustering labels regions in an image by partition- 
ing a given feature set into compact and well-separated 
clusters in feature space. It does not necessarily use 
spatial information. 
Fuzzy c-means clustering : Fuzzy c-means cluster- 
ing (FCM) minimizes the objective function J ,  with 
respect to fuzzy membership grade pi,j and the center 
of cluster vi [l]. The objective function is defined as: 

where d 2 ( X j ,  vi) = (Xj, v i ) T A ( X j ,  vi). A can be any 
positive definite p x p  matrix, where p is the dimension 
of the feature vectors X i ,  c is number of clusters and 
n number of data points. 
Square error clustering : This clustering method 
(CLST) uses the square-error criterion to achieve a 
set of partitions in the feature space [17]. After ini- 
tial set-up for K clusters followed by iteration of mea- 
surement of minimum square-error between the data 
points where K is upper bound of clusters, the par- 
tition process halts when there is no change in the 
clusters. 
Validity measurement : We incorporate the clus- 
tering validity measure for each method to make a 
comparison of unsupervised texture segmentation. Es- 
timating the true number of clusters is critical since 
the number of clusters directly affects the segmenta- 
tion performance, as shown in the Table 3 for the 
training set. This study uses a validity measure from 
[22]. Xie et al. measure the validity metric using 
the degree of separation and compactness of clusters 
as fuzzy validity criteria. For CLST, this study uses 
a modified Hubert (MH) index as in [17]. It com- 
putes the Euclidean distance between each data point 
of each cluster. B0t.h validity measurement methods 
here search for significant change in the range of min- 
imum and maximum number of clusters. 
2.6 Performance Metric 

Misclassified pixel based comparison: Previ- 
ous texture segmentation studies have generally eval- 
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uated performance in terms of misclassified pixel rate 
[8, 10, 4, 15, 20, 171. 
Region based comparison: We adapted the 
methodology used in Hoover et.al to evaluate range 
segmentation algorithms [13]. It can also be ap- 
plied to evaluate performance of texture segmenta- 
tion algorithms. When measuring segmented regions 
against ground truth regions, the primary criteria of 
the method in [13] is the degree of overlap between 
machine segmented and ground-truthed regions. Re- 
sults fall into one of five categories: correct2y de- 
tected, over-segmented, under-segmented, missed and 
noise depending on degree of overlap regions between 
machine segmentation (MS) and ground truth (GT) 
regions. Details can be found in [13]. Performance 
metrics are computed as a XregionRate = n ~ ~ ~ ~ ~ ~ ) ,  

where X can be correctly detected, over-segmented, 
under-segmented or missed. n(Xregion) is total num- 
ber of such instances and Tregion is total number of 
regions in an image. 

2.7 Image Data Set 

Evaluation with ground truth information is an im- 
portant aspect in texture segmentation. In order to 
achieve a more rigorous comparison, we have con- 
structed a set of images with a large number and va- 
riety of textures. Images may contain outdoor or in- 
door scenes including a variety of textured objects and 
backgrounds, as well as non-textured areas. Ground 
truth is more subjective for real scene images than for 
mosaic images. However, we feel that there is no other 
option for evaluating the accuracy of vision algorithms 
which must ultimately deal with real images. There 
are two stages in the ground truth process. First, 
homogeneous textured boundaries in all images have 
been selected by 9 observers in order to decide which 
images give good agreement on the ground truth. 

Second, the agreed-upon GT regions in the 35 im- 
ages were carefully traced out at  a pixel level. After 
the ground truth was completed, we selected 10 im- 
ages to measure variations due to the drawing of the 
GT outlines. The person (A) who generated pixel- 
level ground truth repeated the same process at dif- 
ferent times to measure within-subject (A:A) variation 
and another person (B) performed the process for the 
same images to obtain across-subject (A:B) variation. 
The average percent overlap in region area between 
within-subject GTs is 97.01%, and the percent over- 
lap between across-subject GTs is 95.06%. Thus 95 
% may represent an ideal agreement between MS and 
GT. 

Region based comparison 
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Figure 2: Training results on 10 real scene images 

3 Experimental Results 
3.1 Training 

Each texture feature extraction technique requires 
a set of parameters to characterize textures. Often 
parameters in different texture feature algorithms are 
not clearly comparable. The list of the parameters 
required in GLCM, LAWS and GABOR is shown in 
Table 1. Both GLCM and LAWS require a set of pa- 
rameters to train whereas GABOR does not (Figure 
1). Spatial resolution and sampling window in GLCM 
and LAWS were trained. The selection of features for 
feature-based methods in this study has been made 
based on previous literature. The popularly used fea- 
tures in GLCM [6,7] are energy, entropy, homogeneity, 
contrast and correlation and in LAWS are edge-edge, 
edge-level, edge-shape, shape-level and ripple-ripple 
[ll, 41. Twenty filters formed with four orientations 
and five radial frequencies were selected for GABOR- 
CLST [17]. There are two important aspects that 
should be considered in order to achieve fair compar- 
ison between texture feature computation algorithms. 
First, the level of achieved information or the level of 
importance of required parameters to  each algorithm 
should be similar. Second, the number of features or 
usefulness of features trained should be similar across 
algorithms. 

Segmentation results of five algorithms on two 
training images are presented in Figure 3. The texture 
segmentation performance in training was not close 
to the ideal, as shown in Table 3 (pixel classification 
rate) and Figure 2 (correct region rate). In the evalu- 
ation of pixel classification rate, GABOR-CLST per- 
formed best, then LAWS-FCM, GLCM-FCM, LAWS- 
SPMG and GLCM-SPMG (Table 3). In the cor- 
rect region rate evaluation, LAWS-FCM performed 
best, GABOR-CLST performed second, then GLCM- 
FCM, GLCM-SPMG followed by LAWS-SPMG when 
70% overlap is used as a correct criterion (Figure 2). 
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Table 1: Parameters in GLCM, LAWS and GABOR 
[ Texture 1) Orienta- ] Spatial 1 Sampling 1 Radial 
1 Algorithm (1  tion 1 resolu- 1 window I frequency 
I -  ll I tion [ size [ size r GLCM 11 Average of I 1,3,5 I 8,16,32 1 not applic. 

90°, 135O 

Table 2: Performance on five mosaic images 
I Texture Algorithm I1 Classification I Correct region I 

LAWS-FCM has a greater number of 70% or higher 
overlapped regions than GABOR-CLST. Texture fea- 
tures with SPMG showed relatively poor performance 
in both evaluation criteria. 
3.2 Experiment with Mosaic Images 

One of the major motivations for this study is 
to investigate the importance of using real images 
rather than mosaic images. In order to investigate 
whether mosaic images are a sufficient way to evalu- 
ate the performance of texture segmentation, we ap- 
plied three higher-ranking texture segmentation algo- 
rithms (GABOR-CLST, GLCM-FCM, LAWS-FCM) 
to 5 popularly-used mosaic images. One of the images 
with results by the three algorithms is shown in Fig- 
ure 4. Testing on mosaic images showed substantially 
higher performance than for real scene images (Table 
2). Therefore, use of mosaic images may lead one to 
expect unrealistically high performance on real scene 
images. 

3.3 Testing 
Testing is performed with the parameters se- 

lected from the 70% overlap measure in the train- 
ing. In a 25-image test set with trained parameters, 
GABOR-CLST performed best, LAWS-FCM second, 
and LAWS-SPMG worst in both pixel classification 
rate and correct region rate as shown in Table 3. 
Graphs for the region-based performance metrics ap- 
pear in Figure 5. The highest correct pixel classifi- 
cation rate, 71.15 % was achieved with the GABOR- 
CLST approach with the number of clusters selected 
manually. Performance dropped substantially when 
the number of clusters was selected automatically us- 
ing a validity metric (71.15% and 57.96%). Choice 
of segmentation algorithm plays an important role 

Figure 3: Examples of machine segmented images 
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Figure 4: Machine segmentations on a mosaic image 

Table 3: Performance results on training / testing set 
Algorithms Pixel Correct Average 

classification region runtime 
rate(%) based rate(%) (min.) 

in texture segmentation. LAWS interacts very sen- 
sitively with segmentation algorithms whereas GLCM 
does not show much difference with the choice of seg- 
mentation algorithm. FCM works better with LAWS 
than with GLCM. SPMG works better with GLCM 
than with LAWS. Texture segmentation with SPMG 
performed worse than with clustering based methods. 
Therefore, we might infer that the choice of segmenta- 
tion algorithm indeed makes a difference in a texture 
segmentation. The misclassified pixel rate evaluation 
measures the average overlapping pixels with highest 
overlapped region to its ground truth region without 
counting over-segmentation or under-segmentation. 

One important aspect in region segmentation eval- 
uation is to examine how a region is segmented by 
a certain segmentation algorithm instead of measur- 

ing only misclassified pixels or correct regions. Over- 
segmentation rate indicates presence of regions falsely 
detected along the correct boundary orland regions 
confused in homogeneous regions. Graph 2 in Figure 
7 shows that GABOR-CLST and GLCM-FCM have a 
higher over-segmentation rate than others. The fixed 
size of operating window would not perform robustly 
for a common texture with varying resolution. Multi- 
ple sizes of operating wuindow might be a partial solu- 
tion for this problem. Most algorithms in this study 
show low under-segmentation rate (Graph 3 in Figure 
5). GABOR-CLST under-segmentation represents a 
rate of merged neighbor regions due to the lack of dis- 
criminating power. 

4 Conclusions 
Evaluation of texture segmentation performance is 

not an easy task since each technique has its own way 
to characterize textures. GABOR-CLST approach 
with validity metric offers the best performance in 
this study. GABOR more readily incorporates multi- 
resolution information than GLCM and LAWS. Since 
GABOR computes more filters to capture texture 
characteristics than GLCM and LAWS, it segments 
better than the other algorithms considered. 

Testing on mosaic images showed unrealistically 
high performance. Two possible reasons can be given 
for this. First, in a mosaic image, region boundaries 
are smooth so that performance of region segmenta- 
tion gets better. Second, very distinctive textures may 
be positioned as neighbor regions, which would lead to 
high performance. Clustering methods require a range 
for the number of clusters or regions. In order to de- 
velop an unsupervised texture segmentation with clus- 
tering methods, one should carefully test for a validity 
metric. SPMG seems suitable only as a preliminary 
or coarse-level segmentation [4]. 

Our evaluation method is fully automated and eas- 
ily applicable to other proposed texture segmentation 
algorithms. It gives more relevant and detailed re- 
sult information than simple metrics such as percent 
correct pixel classification. The relevant tools will be 
available to  the public. 
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