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9 Abstract

10 Bagging forms a committee of classifiers by bootstrap aggregation of training sets from a pool of training data. A

11 simple alternative to bagging is to partition the data into disjoint subsets. Experiments with decision tree and neural
12 network classifiers on various datasets show that, given the same size partitions and bags, disjoint partitions result in
13 performance equivalent to, or better than, bootstrap aggregates (bags). Many applications (e.g., protein structure
14 prediction) involve use of datasets that are too large to handle in the memory of the typical computer. Hence, bagging
15 with samples the size of the data is impractical. Our results indicate that, in such applications, the simple approach of
16 creating a committee of n classifiers from disjoint partitions each of size 1=n (which will be memory resident during
17 learning) in a distributed way results in a classifier which has a bagging-like performance gain. The use of distributed
18 disjoint partitions in learning is significantly less complex and faster than bagging.
19 � 2002 Published by Elsevier Science B.V.
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21 1. Introduction

22 Many data mining applications use data sets
23 that are too large to be handled in the memory of
24 the typical computer (Shafer et al., 1996; Dar-
25 lington et al., 1997; Chan and Stolfo, 1993; Pro-
26 vost et al., 1999; Moore and Lee, 1998; Bowyer et

27al., 2000; Hall et al., 1999, 2000; Oates and Jensen,
281998). One possible approach is to subsample the
29data in some manner (Provost et al., 1999; Brei-
30man, 1999). However, it can be difficult a priori to
31know how to subsample so that accuracy is not
32affected. Also, recent work by Perlich et al. (in
33press) has shown that classifier accuracy tends to
34increase with more training data even for large
35data sets. Another possible approach is to parti-
36tion the original data into smaller subsets, and
37form a committee of classifiers (Chan and Stolfo,
381993; Provost and Hennessy, 1996). One advan-
39tage of this approach is that the partition size can
40simply be set at whatever amount of the original

Pattern Recognition Letters xxx (2002) xxx–xxx

www.elsevier.com/locate/patrec

*Corresponding author. Tel.: +813-974-4195; fax: +813-974-

5456.

E-mail addresses: chawla@csee.usf.edu (N.V. Chawla),

tmoore4@csee.usf.edu (T.E. Moore), hall@csee.usf.edu (L.O.

Hall), kwb@cse.nd.edu (K.W. Bowyer), wpk@ca.sandia.gov

(P. Kegelmeyer), csprin@ca.sandia.gov (C. Springer).

0167-8655/02/$ - see front matter � 2002 Published by Elsevier Science B.V.
PII: S0167-8655 (02 )00269-6

PATREC 3081 No. of Pages 17, DTD=4.3.1
3 September 2002 Disk used SPS, Chennai

ARTICLE IN PRESS

mail to: chawla@csee.usf.edu


UNCORRECTED
PROOF

41 data can be conveniently handled on the available
42 system. Another advantage is that the committee
43 potentially has better accuracy than a single clas-
44 sifier constructed on all the data.
45 In its typical form, bagging involves random
46 sampling with replacement from the original pool
47 of training data to create ‘‘bags’’ of data for a
48 committee of thirty to one hundred classifiers.
49 Bagging has been shown to almost always result in
50 equal or (usually) improved performance over a
51 single classifier created on all of the original data
52 (Breiman, 1996; Quinlan, 1996; Bauer and Kohavi,
53 1999). The success of bagging suggests that it
54 might be a useful approach to create accurate
55 classifiers for large data sets. We define large data
56 sets as those which do not fit in the memory of a
57 typical scientific computer. However, experience
58 with bagging has primarily been in the context of
59 small data sets. If the original data set will not fit in
60 the main memory of the typical computer, then
61 none of the thirty or more bags one might create
62 will fit. This raises the question of which particu-
63 lars of the bagging approach are essential in the
64 context of large data sets. We consider the ques-
65 tion of whether simple partitioning of the training
66 data into tractable-size subsets can produce an
67 ensemble of classifiers with accuracy equal to that
68 of a single classifier built on all of the data. In this
69 work, we show that simple partitioning of a large
70 original data set into disjoint subsets results in
71 better performance than creating bags of the same
72 size. In other words, it is the committee of classi-
73 fiers that is essential and bootstrap aggregation to
74 form the individual classifiers is not essential.
75 Further, it is straightforward to create one or
76 several different disjoint partitions of data and the
77 process is rapid.
78 Classifiers can be built in a distributed way on
79 disjoint partitions. Each of n classifiers can be
80 learned on a separate processor in parallel. Fur-
81 ther, for large enough partitions (bags) the per-
82 formance of the resulting classifier will meet or
83 exceed that of a classifier built on all the data. The
84 time required to build an ensemble of n classifiers
85 which are learned independently on n processors
86 without communication will be the longest time
87 required to learn a single classifier on a processor.

88In Section 2, we discuss related work. In Section
893, we describe our experimental setup for small
90data sets from the UC Irvine repository (Blake and
91Merz, 1998), as well as the setup for experiments
92with a mid-size and large data set from our own
93research. We also describe the base classifiers and
94computing systems used in the experiments. Sec-
95tion 4 contains the experimental results. Finally,
96Section 5 contains a discussion of the results and
97conclusions that can be drawn.

982. Literature review

99Bagging (Breiman, 1996) has been shown to
100improve classifier accuracy. Bagging basically
101combines models learned on different samplings of
102a given dataset. According to Breiman, bagging
103exploits the instability in the classifiers, since per-
104turbing the training set produces different classifi-
105ers using the same learning algorithm. Quinlan
106(1996) experimented with bagging on various da-
107tasets and found that bagging substantially im-
108proved accuracy. However, the experiments were
109performed on small datasets, the largest one being
11020,000 examples.
111Domingos (1997) empirically tested two alter-
112native theories supporting bagging: (1) bagging
113works because it approximates Bayesian model
114averaging or (2) it works because it shifts the
115priors to a more appropriate region in the decision
116space. The empirical results showed that bagging
117worked possibly because it counter-acts the in-
118herent simplicity bias of the decision trees. That is,
119with M different bags, M different classifiers are
120learned, and together their output is more complex
121than that of the single learner.
122In (Street and Kim, 2001) an ensemble of clas-
123sifiers are built from training data which is treated
124as a stream. Each classifier is trained on a fixed
125amount of data from the stream. The size of the
126ensemble is fixed at 25 classifiers. Classifiers
127‘‘compete’’ for entry into the ensemble based on
128their accuracy and diversity. This approach allows
129an ensemble classifier to be built from an unlimited
130amount of training data. It also facilitates building
131an ensemble classifier which might be built on data
132with temporal dependencies, where the concept to
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133 be modeled may vary over time. In their experi-
134 ments, the ensemble classifier was usually slightly
135 less accurate than a classifier which was built with
136 as much data as the current ensemble had used. In
137 our work larger training sets are used.
138 In (Breiman, 1999) classifiers were built on
139 small randomly chosen subsets of an overall
140 training set. This approach can deal with ex-
141 tremely large training datasets, but requires many
142 classifiers because it uses somewhere around 800
143 examples per classifier in the discussed experi-
144 ments. Also, the process of continually selecting
145 small subsets can be computationally problematic
146 for very large datasets. This is different from the
147 approach we are looking at, in which the number
148 of training samples may be as large as main
149 memory space available.
150 Chan and Stolfo (1995) compared arbiter and
151 combiner strategies by applying a learning algo-
152 rithm to disjoint subsets of data. An arbiter
153 scheme uses a learned representation of which
154 classifier to choose given an example and a com-
155 biner takes classifier outputs of a test example as
156 input and produces a classification. The described
157 experiments showed that the arbiter strategy can
158 sometimes better sustain the accuracy compared to
159 the classifier learned on the entire data set. The
160 combiner strategy showed a drop in accuracy with
161 the increase in the number of subsets, which can be
162 attributed to the lack of information content in the
163 small subsets. However, a few cases resulted in an
164 improvement in accuracy. We are interested in
165 disjoint subsets of larger original data sets than in
166 (Chan and Stolfo, 1995) and so there is reason to
167 expect that accuracy can be maintained.
168 Chan and Stolfo (1996) relaxed their definition
169 of strict disjoint subsets by allowing a small
170 amount of overlap across the subsets. On the da-
171 tasets DNA Splice Junction with 3190 examples
172 and protein coding region with 20,000 examples, it
173 was found that overlapping did not bring any gain
174 to their meta-learning strategy. Each classifier
175 trained on a disjoint set is biased towards its own
176 set, and when these classifiers are combined a
177 protocol of knowledge sharing is established, and
178 each individual classifier’s bias is reduced. Again,
179 we are interested in large data sets relative to those
180 considered in this work.

181Domingos (1996) describes how a specific-to-
182general rule induction system (RISE) was sped up
183by applying it to disjoint training sets. This al-
184lowed the time required for learning to become
185linear in the number of examples. The resulting
186rule based classifiers were voted (with some
187weighting) in an approach very similar to bagging.
188The major difference was that the size of each
189training data set was much smaller than the orig-
190inal. On a set of seven data sets from the Irvine
191repository using disjoint partitions of between 100
192and 500 examples they found that the resulting
193voting performance was generally as good as or
194better than applying RISE to all the data.
195Dietterich (2000) describes how an ensemble of
196decision trees was built from a single unmodified
197training set. Diversity in the trees was obtained by
198randomly choosing a test at each internal node
199from among the top k tests (ranked by information
200gain, with k typically 20). Each tree was generally
201suboptimal, but when voted as an ensemble they
202provided a bagging-like and sometimes better ac-
203curacy gain. This result seems to suggest that
204bagging-like performance can be obtained from a
205set of diverse classifiers (in the sense that they
206make errors on different examples) which may
207each be suboptimal (in the sense that they are not
208as good as a classifier built on all the data without
209any manipulation), but similar in accuracy.
210Hall et al. (2000) learned decision trees using
211disjoint partitions of data and then combined the
212classifiers. It was found that when using a conflict
213resolution strategy for combining rules, the accu-
214racy usually did not decrease for a small number of
215partitions, at least on the datasets tested. Our
216current work is similar to this, but focuses on
217comparison of bagging-like approaches to simple
218partitioning of large datasets.
219Provost et al. (1999) found that subsampling the
220data gave the same accuracy as the entire dataset
221at much lower computational cost. They analyzed
222‘‘progressive sampling’’ methods––progressively
223increasing the sample size until the model accuracy
224no longer improved. It was found that adding
225more training instances did not help the accuracy
226of the classifier, and after some number of in-
227stances the performance of the classifier plateaus.
228As pointed out later in the discussion section, our
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229 results indicate that simple subsampling to pro-
230 duce one smaller training set is not a profitable
231 strategy for the larger datasets that we consider.
232 However, more complicated subsampling strate-
233 gies may be useful.

234 3. Experiments

235 Three sets of experiments were performed. The
236 first uses five small datasets, representative of
237 those commonly used in pattern recognition and
238 machine learning research. It compares four ap-
239 proaches to creating a committee of N classifiers,
240 with each classifier created using ð1=NÞth of the
241 training data. The performance of the approaches
242 is also compared to that of true bagging––bags of
243 the same size as the pool of training data, ran-
244 domly sampled with replacement. The point of this
245 first set of experiments is to isolate the essential
246 factor(s) leading to good performance in the
247 committee of classifiers. The second set of experi-
248 ments uses a mid-size dataset of almost 230,000
249 examples. The same four approaches are evaluated
250 on this data set. The point is to verify that the
251 pattern of performance results observed with
252 smaller data sets holds with a larger data set.
253 Based on the first two sets of experiments, the
254 disjoint partitioning approach is identified as of-
255 fering equivalent performance for a given size of
256 partition/bag. It is also the simplest of the ap-
257 proaches considered. The last experiment uses a
258 large dataset of approximately 3.6 million exam-
259 ples to investigate the degree of performance im-
260 provement that the disjoint partitioning approach
261 can achieve over a classifier built on all the original
262 data.

263 3.1. Variations of partitioning and bagging

264 We investigated four different approaches to
265 creating a committee of classifiers from an original
266 data set (see Fig. 1 for an illustration). One ap-
267 proach is to simply randomly partition the original
268 data into N disjoint partitions of size ð1=NÞth of
269 the original data. Thus the union of the N training
270 sets is identical to the original data. Results of this

271approach are labeled with ‘D’ (for ‘‘disjoint’’) on
272the graphs.
273The second approach is to create N bags of size
274ð1=NÞth of the data. Each bag is created inde-
275pendently, by random sampling is done with re-
276placement, so the union of the training sets is
277generally not the same as the original data. This
278approach is labeled ‘SB’ (for ‘‘small bags’’) on the
279graphs. Comparison of the SB performance versus
280that of disjoint partitions shows whether the ran-
281dom replication of data elements results in any
282inherent advantage.
283The third approach is like small bags, but
284sampling without replacement for each individual
285bag. When sampling the individual bags without
286replacement, elements of the original data do not
287repeat within a bag, but may repeat across bags.
288This approach is labeled ‘NRSB’ (for ‘‘no-repli-
289cation small bags’’) on the graphs.
290The fourth approach begins with the disjoint
291partitions. Then, independently for each partition,
292a number of its elements are randomly selected
293with replacement to be added to the partition to
294form a ‘‘disjoint bagged’’ training set. Thus the
295union of the training sets is a superset of the
296original data; all elements of the original data
297appear, plus some random replications. The
298number of added elements is equal to the average
299number of repeated elements in a bag in the ‘‘small
300bags.’’ Thus a bag used in this approach is slightly
301larger than ð1=NÞth of the original data. The
302amount of ‘‘extra’’ data included decreases as the

Fig. 1. Four approaches to a committee of classifiers.
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303 bag size decreases. Results of this approach are
304 labeled ‘DB’ (for ‘‘disjoint bagged’’) on the graphs.
305 Comparison of the results of this approach to the
306 results of disjoint partitions looks again at whether
307 the random replication of data elements results in
308 any inherent advantage, but through the effect of
309 allowing larger bag size.
310 In addition to the above four approaches, we
311 also ran ‘‘true bagging’’ on each of the five small
312 datasets. By ‘‘true bagging’’ we mean creating M
313 bags, each of the size of the original data, inde-
314 pendently using random sampling with replace-
315 ment. True bagging is expected to out-perform
316 committees of classifiers formed using smaller
317 bags, but the point is to provide a baseline per-
318 formance comparison for the other approaches.
319 For each experiment in which voting is used,
320 ties are broken by assigning the example to the
321 largest class (in the training set) participating in
322 the tie.

323 3.2. Datasets

324 Three of the small data sets are from the UCI
325 repository (Blake and Merz, 1998), one is from the
326 ELENA project, 1 and one is from our own re-
327 search. The mid-size dataset comes from the
328 problem of predicting the secondary structure of
329 proteins. It is part of the training data set used
330 with a neural network that won the CASP-3 sec-
331 ondary structure prediction contest (Jones, 1999).
332 We concatenated his train set one and test set one
333 as our overall training set. This dataset contains
334 almost 230,000 elements. Each amino acid in a
335 protein can have its structure labeled as helix (H),
336 coil (C), or sheet (E). The features for a given
337 amino acid are twenty values in the range )17 to
338 17, representing the log likelihood of the amino
339 acid being any one of twenty basic amino acids.
340 Using a window of size 15 centered around the
341 target amino acid and an extra bit for each win-
342 dow to indicate an N or C terminus (beginning or
343 end of chain) gives a feature vector of size 315.

344Our large dataset also comes from the protein
345database (PDB) (Berman et al., 2000) used in the
346CASP contests (Lawrence Livermore National
347Laboratories, 2001). For 18,098 protein chains
348taken from the PDB, there are a total of 3,679,152
349amino acids for structure prediction. Using a
350window of size seventeen centered around the
351target amino acid (without an extra N/C terminus
352bit), we have a feature vector of size 340. This
353training data takes from 1.3 to 30 GB to store,
354depending on how feature values are encoded (e.g.
355signed char, integer, or float). The test data for the
356experiments with the large dataset consists of a
357separate set of data. It is all protein chains entered
358into the PDB from July 11 2000 to July 28 2000,
359that are based on X-ray crystal structures with
360resolution of three angstroms or finer. There were
361146 chains entered in this time frame, made up of
36238,423 amino acids. All results are reported on a
363per amino acid basis.
364The size and class distribution of the datasets
365are summarized in Table 1. Note that the experi-
366ments include both two-class (Mammography,
367Phoneme) and multi-class (Letter, PenDigits, Sat-
368Image) datasets. They also include datasets that
369are approximately balanced (Letter, PenDigits)
370and those that are skewed (Mammography, Pho-
371neme, SatImage).
372The four approaches to creating a committee of
373classifiers, plus true bagging, were applied to each
374of the small datasets. The number of bags/parti-
375tions was varied from one to eight. Given the
376modest size of the datasets, creating bags/parti-
377tions of less than ð1=8Þth the original size appears
378to begin to starve the classifiers for training data.
379For the experiments on the small and mid-size
380datasets, the reported results are calculated from
38110-fold cross-validation.

3823.3. Base classifiers and computing systems

383For the experiments on the small and mid-size
384datasets, release eight of the C4.5 decision tree
385system (Quinlan, 1992) and the cascade correlation
386neural network learning code (Fahlman and
387Lebiere, 1990) were run on standard SUN work-
388stations and a 24-node Beowulf cluster computer
389(Mimir). Mimir consists of 900 Mhz Athlon pro-

1 ftp.dice.ucl.ac.be in the directory pub/neural-nets/ELENA/

databases.
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390 cessors each with 512 Mb of memory and pro-
391 cessors are connected with 100 Bt Ethernet. The
392 neural network was only applied to the small data
393 sets due to its extremely long training times and
394 larger memory requirements.
395 The one run of the large dataset to produce a
396 single classifier was done on a single node of a 64-
397 processor SGI IRIX64 with 32 GB of main
398 memory at Sandia National Labs, also using the
399 standard C4.5 release eight. Creating the one de-
400 cision tree on the large dataset took approximately
401 thirty days on the SGI and was not attempted with
402 the much slower neural network learning code.
403 The experiments using partitions of the large
404 dataset were run on the DOE’s ‘‘ASCI Red’’ par-
405 allel supercomputer (Sandia National Labs, 1998).
406 The ASCI Red has 4640 compute nodes, each
407 containing two Pentium III processors sharing 256
408 MB of memory. The processors run a version of
409 the UNIX operating system. The system is based
410 on a distributed-memory mesh architecture, and is
411 capable of 3.15 TeraFLOPS. These experiments
412 used a version of C4.5 modified with MPI calls for
413 parallel execution. The parallel structure of this
414 version of C4.5 is quite simple. The disjoint par-

415titions are loaded into the different compute node
416memories and each compute node independently
417grows a decision tree. The parallel computation to
418create eight decision trees on one-eighths of the
419large dataset takes approximately 8 h; that is, eight
420processors running in parallel for 8 h. It is possible
421to create 32 distributed trees built on 1=8 size
422partitions of the data in approximately 10 h.

4234. Results

4244.1. C4.5 on small data sets

425Figs. 2–6 summarize the experimental compar-
426ison of the different approaches on the small da-
427tasets detailed in Table 1 for C4.5. The plots
428compare the performance of two, four, six, and
429eight disjoint partitions (D) to that of C4.5 on the
430complete data set, and to classifier committees
431formed using the other three approaches (DB, SB,
432NRSB). Results are shown as the average paired
433difference across the 10 folds in the 10-fold cross-
434validation, with standard error indicated. Note the
435zero mean accuracy mid-line; if a point is above

Table 1

Data sets sizes and class distributions

Letter dataset (UCI)––20,000 samples in 26 classes

A:789 B:766 C:736 D:805 E:768 F:775

G:773 H:734 I:755 J:747 K:739 L:761

M:792 N:783 O:753 P:803 Q:783 R:758

S:748 T:796 U:813 V:764 W:752 X:787

Y:786 Z:734

Phoneme dataset (ELENA)––5404 samples in two classes

0:3818 1:1586

PenDigits dataset (UCI)––10,992 samples in ten classes

0:1143 1:1143 2:1141 3:1055 4:1144 5:1055

6:1056 7:1142 8:1055 9:1055

SatImage dataset (UCI)––6435 samples in six classes

1:1533 2:703 3:1358 4:626 5:707 7:1508

Mammography dataset––11,183 samples in two classes

1:10,923 2:260

Jones’ PDB dataset––227,260 samples in three classes

H:75,455 C:100,909 E:50,896

PDB dataset––3,619,461 samples in three classes

H:1,254,335 C:1,537,261 E:827,865
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Fig. 2. Comparison on Letter dataset with C4.5.

Fig. 3. Comparison on PenDigits dataset with C4.5.
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Fig. 4. Comparison on Phoneme dataset with C4.5.

Fig. 5. Comparison on SatImage dataset with C4.5.
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436 the line, then the first of the alternatives examined
437 is superior. If the point is below, then the second
438 was best. And the extent to which the error bar
439 spans the mid-line is the extent to which the results
440 are inconclusive.
441 As an example, the first cluster of four data
442 points on the plot in Fig. 2 represents the results
443 for a committee of two classifiers on the Letter
444 data set. The first point is the difference between a
445 committee of two disjoint partitions and C4.5
446 trained on all of the data; note that the committee
447 of two classifiers performs significantly worse. The
448 second point is the difference between a committee
449 formed using two disjoint partitions versus a
450 committee using two disjoint bags (DB), the third
451 point is two disjoint partitions versus two small
452 bags (SB), and the fourth point is two disjoint
453 partitions versus no-replication small bags
454 (NRSB).
455 From examining the sequence of plots it is clear
456 that disjoint partitions in a number of instances
457 beat small bags. It appears to make little difference
458 whether the small bags are created by sampling

459with or without replacement. The ensembles cre-
460ated from ‘‘bagged disjoints’’ appear to generally
461perform slightly better than those created from
462simple disjoint partitions, but then the training sets
463for the individual decision trees have repeated ex-
464amples which give some examples greater
465‘‘weight’’.
466Because it uses constant-size bags as the num-
467ber of classifiers in the committee grows larger,
468‘‘true bagging’’ should naturally outperform any
469of the four approaches. Data points for ‘‘true
470bagging’’ performance are given in Table 2. Tables
4713 and 4 show the accuracy results obtained by
472learning four classifiers each built from 1=4 of a

Fig. 6. Comparison on Mammography dataset with C4.5.

Table 2

Data points for ‘‘true bagging’’ results

Dataset C4.5 50 bags 75 bags 100 bags

Phoneme 86.50 89.15 89.02 88.15

SatImage 86.30 90.89 90.86 90.84

PenDigits 96.57 98.42 98.43 98.36

Mammography 98.50 98.76 98.79 98.79

Letter 88.10 93.54 93.65 93.80
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473 disjoint four partition utilizing decision trees and
474 neural networks, respectively. Each value in the
475 table is an average over a 10-fold cross-validation.
476 The results from a four partition are representa-

477tive, as more partitions cause greater ‘‘data star-
478vation’’ in some of the small domains. Bagging
479with 50–100 bags clearly outperforms the small
480ensembles. However, the point is that true bagging
481is simply not a practical option for large datasets.
482For the example large dataset here, true bagging
483would require creating about 50 classifiers, each
484training on a data set of the same size as the
485original data. Recall that creating one classifier on
486all the data took 30 days on a substantial SGI
487system. When the dataset is too large to handle
488conveniently in the memory of the typical com-
489puter, the dataset must be broken into some
490number of practically sized, though not ‘‘small,’’
491chunks. The question addressed here is whether
492there is any advantage in creating the practically
493sized chunks using some bagging-like approach, or
494whether simple partitioning is sufficient.

4954.2. Cascade correlation on small datasets

496Figs. 7–11 summarize the experimental com-
497parison of the different approaches on the small

Fig. 7. Comparison on Letter dataset with cascade correlation.

Table 3

Four partitions/bags accuracy in percentage using C4.5

Dataset D SB DB NRSB

Phoneme 83.25 82.66 83.36 83.22

SatImage 87.24 86.31 87.00 85.95

PenDigits 96.15 95.65 96.33 96.12

Mammography 98.37 98.51 98.38 98.32

Letter 85.44 84.19 85.525 84.83

Table 4

Four partitions/bags accuracy in percentage using CC

Dataset D SB DB NRSB

Phoneme 83.75 84.06 83.92 83.59

SatImage 89.43 88.97 89 89.26

PenDigits 90.89 91.01 91.73 90.86

Mammography 97.78 98.19 98.43 98.02

Letter 82.15 81.88 81.96 82.17
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Fig. 8. Comparison on PenDigits dataset with cascade correlation.

Fig. 9. Comparison on Phoneme dataset with cascade correlation.
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Fig. 10. Comparison on SatImage dataset with cascade correlation.

Fig. 11. Comparison on Mammography dataset with cascade correlation.
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498 datasets detailed in Table 1 using cascade corre-
499 lation. The data was not normalized. The results
500 are similar to those obtained with C4.5. The dis-
501 joint partitions are generally as good or better than
502 small bags. The exception is that they lose to small
503 bags for a four partition on the Mammography
504 dataset and to DB at every partition in the
505 Mammography data set. The Mammography da-
506 taset is highly skewed with a small minority class
507 and the repeated examples in the disjoint bag data
508 sets seemed to make an important, if minor, dif-
509 ference in accuracy. The other exception is on the
510 PenDigits dataset where the DB approach is better
511 for a four partition.
512 It is interesting that the ensemble of neural
513 networks is generally no worse than learning from
514 all the data even when partitioning up the small
515 data into eight subsets. In fact, the ensemble is
516 always better than a single neural network for the
517 Letter data set. In general, the ensembles built
518 from disjoint partitions are no worse than those
519 built from bags of the same size for cascade cor-
520 relation neural networks.

5214.3. Results on mid-size data set

522The comparison of the four approaches on the
523mid-size dataset are shown with C4.5 in Fig. 12.
524The results are the means of paired differences and
525the standard error from a 10-fold cross-validation
526from 4 to 16 disjoint partitions. In all cases the
527ensemble classifier learned from disjoint partitions
528resulted in a significantly better classifier than ap-
529plying C4.5 to all of the data.
530Again, we see that simple disjoint partitioning
531offers excellent performance in comparison to the
532other options. In particular, the ‘‘small bags’’ ap-
533proach performs poorly. Only the ‘‘bagged dis-
534joints,’’ with its slightly larger number of examples
535in each bag, offers any hint of performance im-
536provement over disjoint partitions. The ‘‘bagged
537disjoints’’ have the same number of distinct ex-
538amples with a few repeat examples which essen-
539tially gives the repeat examples greater weight.

Fig. 12. Results on (Jones’) ‘‘medium’’ PDB dataset.
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540 4.3.1. Timing
541 We did a detailed comparison of the time re-
542 quired to create an ensemble on the Beowulf
543 cluster for the Jones data set. Table 5 shows the
544 average and standard deviation over 10 trials. For
545 disjoint partitioning for a four partition, there is
546 an average of a 9.4 times speed up over learning a
547 decision tree on all the data, which increases to
548 26.6 times for an eight partition, 46.1 times for a
549 16 partition and 71.3 times for a 24 partition.
550 While the speed gain is impressive, it is actually
551 true that for very large data sets that do not fit in
552 main memory all the data cannot be practically
553 used unless a distributed approach is pursued.

554 4.4. Partitioning results on large dataset

555 Fig. 13 compares the results of creating one
556 decision tree on all of the large dataset versus using
557 a committee of N classifiers, for N ¼ 8, 16, 24, and
558 32. All of the committees were formed using dis-
559 joint partitions of size ð1=8Þth of the large PDB
560 dataset. This size partition just fills the memory of
561 the compute nodes on the ASCI Red. The N ¼ 8

562point represents a straightforward disjoint parti-
563tioning, as was used with the smaller datasets. For

Table 5

Jones dataset: average and standard deviation of CPU time

(longest time taken to learn a decision tree on a partition/bag by

a processor) in seconds for 10-folds

Approach Average time Standard deviation

C4.5 9094.38 137.11

4-D 963.61 14.42

4-SB 990.61 17.04

4-NRSB 967.96 21.22

8-D 342.172 8.46

8-SB 352.04 8.98

8-NRSB 339.51 5.45

12-D 197.19 5.52

12-SB 202.55 3.89

12-NRSB 196.98 4.72

16-D 127.48 3.6

16-SB 130.62 1.32

16-NRSB 128.50 2.7

Convention¼D: disjoint; SB: small bag; NRSB: no-replication
small bag. For instance, four-dimensional means four disjoint

partitions.

Fig. 13. Partitioning results for large PDB dataset.
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564 the committees of 16, 24, 32, and 40 classifiers, we
565 varied the earlier methodology to make use of
566 multiple different partitions of the dataset. For the
567 committees of 16, 24, 32, and 40 classifiers, mul-
568 tiple different partitions of the dataset were used.
569 For example, to create a set of sixteen classifiers,
570 eight classifiers trained on a different eight parti-
571 tion of the data were added to those created on the
572 original eight-partition. We report an average and
573 standard deviation over five trials of different en-
574 sembles of trees of the appropriate size.
575 The average accuracy per amino acid of a single
576 classifier trained on ð1=8Þth of the large dataset is
577 71.21%. A single decision tree created using all the
578 data performs substantially better than this,
579 75.72% versus 71.21%. At the same time, an av-
580 erage committee of eight classifiers created on
581 ð1=8Þths of the data performs substantially better
582 than a single tree created on all the data, 79.1%
583 versus 75.72%.
584 It took approximately 30 days to create a single
585 tree from all the data and an average of 10 h to
586 create an ensemble of from 8 to 32 trees. We did
587 some experiments to determine the relative speeds
588 of the SGI machine vs. an ASCI Red processor
589 and found the ratio to be 1.92 for the same size
590 decision tree learning problem. So, the Red pro-
591 cessor is significantly faster. Normalizing for pro-
592 cessor speed, the distributed learner can be created
593 approximately 37 times faster than learning from
594 all the data.

595 5. Conclusions and discussion

596 The results support several important conclu-
597 sions. The overall conclusion is that datasets too
598 large to handle practically in the memory of the
599 typical computer are appropriately handled by
600 simple partitioning to form a committee of classi-
601 fiers. More specifically, a committee created using
602 disjoint partitions can be expected to perform at
603 least as well as a committee created using the same
604 number and size of bootstrap aggregates (‘‘bags’’).
605 Also, the performance of the committee of classi-
606 fiers can be expected to exceed that of a single
607 classifier built from all the data.

608The following considerations may provide in-
609sight into the pattern of results. Practical factors
610aside, one generally wants (a) each classifier in a
611committee to be formed using as much data as
612possible, and (b) the size of the committee to be as
613large as possible. Practical considerations typically
614(a) limit the amount of data that can be used in
615training a single classifier, and (b) limit the size of a
616classifier committee. If the data set is large enough,
617or the memory limit small enough, then parti-
618tioning into N disjoint subsets gives a reasonable
619size committee and this approach should suffice. If
620the N disjoint partitions result in too small of a
621committee, then the data set may be partitioned
622multiple times to increase committee size, as we
623did in Section 4.4. A typical result from parti-
624tioning the data multiple times is shown in Table 6
625for the ‘‘small’’ Letter data set. The data set is
626broken into a two partition five different ways. A
62710-fold cross-validation is done, meaning that the
628test set is left out and then the training set parti-
629tioned into halves (eight different ways). From the
630table, it is clear that accuracy continues to increase
631and with 16 partitions we are approaching the
632accuracy of pure bagging (93.8% for 100 bags),
633considerably outperforming a C4.5 generated de-
634cision tree from the whole data set.
635Results obtained here seem to support the po-
636sition that bagging results depend simply on ob-
637taining a diverse set of classifiers (Breiman, 1996;
638Chawla et al., 2001; Dietterich, 2000; Domingos,
6391996). Building classifiers on disjoint partitions of
640the data provides a set of classifiers that meet this
641requirement. Each individual classifier performs
642similarly, but correctly classifies a (partially) dif-
643ferent set of examples.

Table 6

Multiple two partitions on the Letter data set for a 10-fold

cross-validation using C4.5

Number of two partitions Accuracy Standard deviation

1 83.645 1.078

2 89.225 0.522

3 91.21 0.589

4 91.885 0.461

5 92.26 0.427

C4.5 is 88.1% accurate in a 10-fold CV.
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644 Some researchers have suggested that many
645 large-data-set problems can be solved using only a
646 fraction of the data, perhaps by simple subsam-
647 pling. However, recent work has suggested that all
648 the data (even for very large training data sets)
649 may result in the maximal accuracy classifier
650 (Perlich et al., in press). Classical pattern recog-
651 nition would suggest that this question is more
652 appropriately viewed in terms of the density of
653 training sample population in the feature space,
654 rather than simply the size of the dataset. There is
655 excess data only when (parts of) feature space are
656 densely populated. The fact that the average
657 ð1=8Þth partition of our large dataset had perfor-
658 mance of 71.21%, whereas a single classifier
659 trained on all the data gave 75.72%, indicates that
660 the original data could not be profitably subsam-
661 pled in a simple way. Given that the problem has a
662 340-dimension feature space, this is perhaps not
663 surprising, as even 3.6 million examples can result
664 in a sparse population of such a space.
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