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1 Introduction

The practice of using more than one biometric modality, daprgensor, or algo-
rithm to achieve recognition, commonly referred toradti-biometrics, is a tech-
nigue that is rapidly gaining popularity. By incorporatinilti-biometrics into the
recognition process, many of the short-comings of tradéligingle-biometric sys-
tems can be alleviated and overall recognition accuracybeaimproved. Multi-
biometrics can inherently increase system robustnessrbgviag the dependency
on one particular biometric approach. Further, a systemutilzes more than one
biometric feature or matcher may be more difficult to delitbely spoof [17]. Sys-
tems that make use of multiple biometric features can alsvige redundancy that
may lower failure-to-acquire rates. Though multi-bionegtoffers many potential
advantages over traditional biometric systems, inefficigatem design can greatly
increase sensor cost, computation time, and data acquisitne.

While research into multi-biometrics has received a largeease in attention
over recent years, the task of fusing multiple biometric alibiés from a single
sensor remains an under-studied challenge. Due to a lackadéble multi-modal
data, many current experiments in multi-biometrics créelbtémeric” datasets, in
which samples of one biometric modality from one set of scisj@are arbitrarily
paired with a second biometric modality from a separate §subjects in order
to simulate a multi-biometric scenario [1]. This approattigugh useful for pre-
liminary experimentation, may mask unknown dependencétwden modalities.
Further, chimeric datasets simulate a multi-biometriaac® in which samples of
each modality are acquired independently. In practics, much more desirable to
simultaneously acquire multiple modalities from a singtasor if possible for cost
and usability reasons.
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This chapter presents a system which simultaneously ajfzice and iris sam-
ples using a single sensor, with the goal of improving re@d@@naccuracy while
minimizing sensor cost and acquisition time. The resulsiystem improves recog-
nition rates beyond the observed recognition rates foeeiolated biometric.

2 Characteristics of Multi-Biometric Systems

The termmulti-biometrics encompasses a wide range of fusion techniques and its
precise meaning is somewhat inconsistent in the litergfrgL6], [21]. In the sim-
plest, traditional single-biometric system, one sens@ges a particular body part
(i.e. iris, face, or fingerprint) to produce a single imagee Tmage is then processed
and matched against a gallery using a specific algorithm tairla verification or
identification result. A multi-biometric system aims to iroge recognition rates (or
address some other drawbacks of traditional systems) hyiding redundancy at
one or more of the steps in this recognition process.

In general, there are five types of multi-biometric systetis:[

1. Multi-Sample: Multi-sample systems collect and process multiple imadéseo
same bhiometric. Such systems benefit from some of the adyestaf multi-
biometrics, while minimizing sensor cost.

2. Multi-Instance: Similar to multi-sample, multi-instance systems collentl a
process images of several distinct instances of the sanmeelrie trait. Exam-
ples of multi-sample systems include systems that conaidétiple fingerprints
or both irises for recognition. Alternatively, multi-irsstce systems may collect
multiple images of the same trait with some controlled \taorg for example, a
system may collect face images with smiling and neutralesgions.

3. Multi-sensor: A multi-sensor system images the same biometric trait usioge
than one sensor. Multi-sensor systems may be considerdidithgpnulti-sample
as well. The incorporation of multiple sensors naturallgde to an increase in
system cost, but this approach may help to address a parttwals or shortcom-
ing in a specific sensor by obtaining a cross-sensor consensu

4. Multi-Algorithm: Multi-algorithm systems use more than one matching algo-
rithm on the same biometric sample and then fuse the resuitsgrove system
performance. Because this approach can make use of the sametiic sam-
ple for each matcher, multi-algorithm systems can be cibstte/e and help to
reduce algorithmic biases.

5. Multi-Modal: Multi-modal systems consider more than one biometric,trait
modality, in the recognition process. Ko [7] suggests thattinmodal fusion
benefits the most when the biometric modalities are orthalgdhodalities can
be considered orthogonal when the match performance of odality does not
predict the performance of the other. In the ideal scenafiaf the biometrics
would be orthogonal, simultaneously imaged with the samem@eand captured
at high quality.
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While these five classifications can be used to describe matislmmetric ap-
proaches, there are naturally some systems which repregbritls of more than
one multi-biometric approach. Nonetheless, it is usefuhawe some method of
categorizing multi-biometric systems, and understanttiegadvantages and disad-
vantages associated with each approach is crucial to gateinsydesign.

3 Levelsof Fusion

In multi-biometric systems, the terfasion is often used to describe the process of
combining information from more than one source in the radamn process. The
previous section described the stages at which multi-binesystems may use
redundancy to improve performance; fusion is used to coetiie results of the
redundancy so that a single output can be produced. Thefaralevels at which
fusion can occur in a multi-biometric system.

1. Signal-Level: Using signal-level fusion, multiple samples may be comtitee
gether to create one superior sample. An example of sigisarius a super-
resolution technique which combines multiple images ofsdume iris to achieve
a higher-quality image.

2. Feature-Level: In a system that uses feature-level fusion, matching featare
first extracted from each biometric sample and fusion is tigedndense all of
the features into a single biometric signature.

3. Score-Level: With score-level fusion, the match scores are combinedddipre
a final result. Examples include a multi-sample approachhitiveach sample
is matched separately and the resulting scores are fusedrarti-algorithm
approach in which the same sample is matched using multiptehrars and the
results of all of matchers are combined.

4. Rank-Level: Similar to score-level fusion, rank-level fusion combimaatch
rankings, rather than the actual scores, into a final rankirdgetermine the best
match.

5. Decision-Level: Decision-level fusion applies a matcher to each biome#i-s
ple (or the same matcher to multiple samples) to obtain adzotesponse in-
dicating whether or not each comparison is a match. The taigre then fused
using Boolean operators, a voting scheme, or some simildrade

It has been suggested in literature that systems which pocate fusion at an
early stage of the recognition process (e.g. signal or fedavel fusion) have the
potential to be more effective than systems which use fukitar in the pipeline
[17]. Despite this, many researchers believe that scoed-fasion offers the best
trade-off between potential performance gain and easemeimentation [11].
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4 Related Work

The fusion of face and iris modalities is a biometric applotiat has gained in-
creasing attention over the past decade, likely due to tpelpdty of the individ-
ual modalities, as well as the natural connection betweemttDespite this recent
trend, very few studies have been done on fusion of face @diometrics from a
single sensor.

The most common method of multi-biometric fusion is scaweel fusion. Zhang
et al. approach the problem of fusing face and iris biometicder near-infrared
lighting using a single sensor [24]. Frontal face imagesaaguired using a 10
megapixel CCD camera. Eye detection and face alignment enfermed using
Local Bit Pattern histogram matching as described in Li ef3l The eigenface
algorithm and Daugman'’s algorithm are used to perform facki@s recognition,
respectively, and score-level fusion is accomplished lveasum and product rules
after min-max normalization. Numerous other score-leusidn approaches have
been tested on chimeric datasets. Chen and Te Chu use arghiedeaverage of
the outputs of matchers based on neural networks [4]. Warad, é¢st weighted
average, linear discriminant analysis, and neural netsviimkscore fusion [22].

Another common approach to biometric fusion is feature@lléusion through
concatenation. Rattani and Tistarelli compute SIFT festdor chimeric face and
iris images and concatenate the resulting feature vectdisThe number of match-
ing SIFT features between two vectors (measured by Euclidetance) is used as
a match score for that comparison. Son and Lee extract &safar face and iris
images based on a Daubechies wavelet transform [18]. Gamatt&in is used to
form a joint feature vector, and Euclidean distance betweeature vectors is used
to generate match scores.

The Multiple Biometrics Grand Challenge (MBGC) providedodlection of face
and iris data to researchers in order to provide a standatde® for comparing
matching and fusion techniques [12],[13]. The MBGC datduded a subset of
the near-infrared videos used in the experiments beingpted in this chapter, as
well as face stills, high-quality color face video, iridistiand iris video. In general,
results showed that fusion of face and iris biometrics effeimproved accuracy
over either biometric alone. The near-infrared videosasdel as part of the MBGC
are also used by Yang et al. [23]. Yang et al. investigate teeaf SIFT features
to perform alignment between the partial faces presentendtitaset in order to
facilitate face matching, but do not incorporate theseltgesoto a multi-biometric
experiment.

The work presented in this chapter differs from previouskniarthe fusion of
face and iris biometrics in several facets. First, this thiapses only genuine multi-
modal data, rather than chimeric data for experimenta#aialitionally, the fusion
is accomplished using a single sensor. Though Zhang etsal.use a single sen-
sor, the authors also manually acquire each image to gesrdmgh quality face
and iris samples. In the experiments presented in this ehagt on-the-move and
at-distance sensor is used to acquire data for a high thpptgitenario. The re-
sulting dataset consists of a much wider range of samplatgueth incomplete
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data for some subjects, making the dataset a practical bileoging testbed for fu-
sion experiments. These experiments also differ from woekented on the MBGC
data; the near-infrared videos used in the MBGC dataset maraially selected
to guarantee the presence of a subject in the field of viewyedsein the experi-
ments shown in this chapter, this process is done autorttgtiEaally, this work
uses multi-modal, multi-sample, and multi-instance apphes to improve system
accuracy and robustness.

5 Approach

To facilitate the fusion of face and iris biometrics from agle sensor, the Iris
on the Move (IOM) sensor was selected for data acquisitibre [OM, shown in
Figure 1 is a sensor designed for high-throughput standrisffecognition [10].
The IOM features a portal which subjects walk through at radrwalking pace.
As a subject passes through the portal, the subject is ilatad with near-infrared
(NIR) LED’s, and frontal video is captured by an array of ghkertically-arranged,
fixed-focus cameras equiped with NIR filters. The presenceulfiple cameras
allows the system to handle a larger range of subject heights the sensor can
be extended to include more than three cameras to suppovearlager range of
subject heights. Though the sensor is intended for iris @vagjuisition, the face is
typically captured as well. While the sides of the portal helplirect subjects into
the field of view of the cameras, it is possible for subjectsttay partially out of the
video frames, leading to frames with partial faces or onlg ois visible. Figure 2
shows corresponding frames from each of the three IOM camehdle a subject
passes through the in-focus region of the IOM. Each framéucag by one of the
IOM cameras is a 2048 by 2048 pixel grayscale image. A typitahcquired by
the system is approximately 120 pixels in diameter.

The general steps used in this work to combine face and ioéirics from
the IOM sensor are outlined in Figure 3. As previously déwatj when a subject
passes through the IOM portal, three videos are collectétl,ame video coming
from each of the IOM cameras. In a preprocessing step, thresgonding frames
of the three videos are stitched together to create onealivideo. Next, a series of
detection phases are used to locate whole faces and eyeghiframe. Matching is
then performed on each face sample and iris sample indepiydend the results
are fused using several different techniques.

5.1 Preprocessing

In order to increase the likelihood of a whole face being eagut for each subject,
the three videos from each IOM acquisition are “stitchedjetiher to combine cor-
responding frames. As can be seen in Figure 2, there is signifivertical overlap
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Fig. 1 Picture of the Iris on the Move Sensor designed by Sarnoff Gatjpm. The IOM was used
for all probe data collection. Picture reprinted from [2}kvpermission from Elsevier.

between the top and middle cameras, as well as between tlttensidd bottom
cameras. Due to imperfect calibration of the individual eass, some horizontal
misalignment between the cameras is also present.

A template-matching approach is taken to determine theetbsianslation to
align frames from adjacent cameras. Specifically, the botpomrtion of the top
frame is cropped and used as a template. This template isntla¢ched against
the upper half of the middle frame, and the best match is teelegs the desired
alignment. This process is repeated for the bottom camedrarermhe template is
created from the top portion of the bottom frame and matclgethat the lower half
of the middle frame.

Finally, noticeable illumination differences were obsshbetween correspond-
ing frames from different cameras. To account for this d@ipancy, histogram
matching is used to match the top and bottom frame to the iilation observed
in the middle frame. Figure 4 shows the intermediate and femllts of the stitch-
ing procedure for an example frame.
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Fig. 2 Example of corresponding frames from the IOM as the subject padssegh the in-focus
region of the portal. The left image shows a frame from the top cantiee middle image shows a
frame from the middle camera, and the right shows a frame from ttterb@amera.

5.2 Face Detection

Once the frame stitching is completed, the next step in thprpcessing phase is to
detect a face in each frame. To accomplish this task, the Oyémplementation
of the Viola-Jones cascade face detector is used [3], [28].detector was trained
on whole faces, and thus may or may not detect faces whichlyepartially within
the field of view of the camera.

5.3 Eye Detection

The purpose of the eye detection phase is twofold. The pyirgaal is to detect
any eyes present in each frame for iris matching. Howeveldatations of the eyes
that are detected in the faces produced by the face deteeta@lso used for an
alignment phase during face matching. A template matchppgaach is adopted
for eye detection. The template used to search for eyes Infemme is based on the
specular highlights generated by the reflection of the IONDEE

The eye detection is completed in two phases. First, the leymatching is
performed on the upper left and upper right quadrants of &aEhdetected by the
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Fig. 3 A diagram of the pipeline used in the proposed multi-biometricesyist

face detector. This approach guarantees that each defacgdiill have two eye
locations estimated as well.

Because it is possible for eyes to be detected in frames wieoke faces were
not present (or in frames where the face detector failed tiectiéhe face), a second
round of template matching is performed on any stitched éavhere a face was
not detected. In these frames, the location of the parti@ faan be crudely esti-
mated by computing the sums of the rows and columns of thedraad comparing
these sums to appropriate thresholds. This partial faeetienh step is not required,
but reduces the likelihood of false eye detections by limgithe search space to the
region of the image that is likely to contain the eyes. An eglenof a face region
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Fig. 4 An example of the progression during alignment between correspgifirames from the
top and middle camera. The top left image is the frame from the anpeca with the template
marked as a rectangle. The bottom left image is the frame frommildelle camera, with the
matched region indicated. The middle image is the composite imwitfe the frame from the
top camera cropped and padded. The overlapping region isaitedi. The right image shows the
final stitching results after histogram matching. A similar apphoa used to stitch the frame from
the bottom camera to the middle frame.

being estimated in this manner is shown in Figure 5. Once #ngap face region
has been estimated, the template matching is performee twi@entify the two
best eye locations. Finally, the detected eyes are cropped the corresponding
location in theoriginal frames to remove any possible artifacts caused by the his-
togram matching in the stitching phase. In cases where tieetéel eye is located in
the overlapping region between two cameras, the eye is etbfspmboth camera
frames.

5.4 Face Matching

In this work, Colorado State University’s implementatidritee eigenface algorithm
is used for face matching [5], [19]. To achieve alignmentwtite training set, the
probe face images are normalized using the eye centerdetttycthe eye detector.
The Mahalanobis cosine metric is used to compute the distagivveen two feature
vectors. Using this metric, match scores can range fromtel100, with -1.0 being

a perfect score. The output of the face matcher stage of pedipe is a distance for
every comparison between each probe face image and gallezyrhage.
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Fig. 5 Example of the image projection technique used to estimate thédooof the face during
eye detection. The graphs on the right and bottom of the imageesent the summations of the
pixel values in each row or column, respectively. The projtitess represent the face boundaries
determined using appropriate thresholds.

5.5 IrisMatching

For the iris matcher, a modified version of Daugman’s algarits used to compare
each probe iris image to the gallery [6]. The normalizedtfoaal Hamming dis-
tance, referred to simply as the Hamming distance in theofetstis work, ranges
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from 0.0 to 1.0, with 0.0 being a perfect match. The Hammirggadice is normal-
ized to adjust low Hamming distances that occur for compagshat used relatively
few bits. The output of the iris matcher stage of the pipelsn® Hamming distance
for every comparison between each probe eye image andygaifeimage.

5.6 Fusion

In this framework, the problem is multi-sample (i.e. seVéaeaes from each video),
multi-modal (i.e. both iris and face samples from each vjdwtd multi-instance
(i.e both left and right irises from each video). Conseglyetitere are many meth-
ods which could be used to combine the face and iris biongetrion each video.
Several fusion techniques are considered at both the sodreaak-level.

The first method considers only one biometric modality infttston process, and
makes use only of the multi-sample and multi-instance dsiwers of the problem
by taking the minimum score for a given modality. For examjptethe Minlris
approach, the minimum score for all of the iris comparisasnfa given video
is reported as the best match. Similarly, the MinFace ambrtekes the minimum
score for all of the face comparisons from a given video teheine the best match.
Equations 1 and 2 express the Minlris and MinFace fusiorsruéspectively, for a
given probe video,

Minlris= Min{l; jli=1...n,j =1...G} (1)

MinFace= Min{F jli=1.mj=1.G} 2)

wheren andm are the number of irises and faces detected in the videcgctgely,

G is the number of gallery subjects, is the Hamming distance between ikt

iris and thej-th gallery subject, anf j is the score for the comparison between the
i-th face and thg-th gallery subject.

The next type of fusion method considered is rank-levebinusand can incorpo-
rate face, iris, or both modalities into the decision precésBorda count is used to
determine a best match across the desired biometric miedalih a Borda count,
the scores for all comparisons from a given sample are ssuethat the first rank
corresponds to the best score for that sample. Each sangple#sts votes for the
top v ranked subjects, where the weight of each vote is inverselggstionate to
rank number. Each sample votes in this manner, and the galldsject with the
most votes is taken to be the best match. In these experipteat3ordalris method
considers only the iris scores to perform fusion, and thelBBace method consid-
ers only face scores. The BordaBoth method allows both faderés samples to
vote, withv votes being cast by each iris and face sample.

Two vote weighting schemes are tested for the Bordalrisg&eace, and Bor-
daBoth fusion methods. In the Linear approach, the vote htégylinearly pro-
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portional to the rank; specifically, the weight associateththe rankn match is
described by the equation

VoteWeight, =v+2—n 3)

andv represents the total number of votes cast by each biometnple. In the
Exponential approach, the weight of the vote is expondptialated to the rank.
Specifically, the weight associated with the rankzatch is described by the equa-
tion

VoteWeight, = 2" 4)

The third fusion method again uses score-level fusion,émginting a weighted
summation of the iris and face scores. The summation rulebeaexpressed as
Equation 5 for a given probe video,

m
1(1— FNorm i) + B = JZl(l— INorm; k)

axn—+Lxm

a *
i

M=

SumScore, = (5)
wheren andmare the number of irises and faces detected in the videcgctgely,
INorm;  is the normalized Hamming distance between jHh iris and thek-th
gallery subject, anFNorm  is the normalized score for the comparison between
thei-th face and th&-th gallery subject. Each face and iris score is normalizsalgu
min-max normalization, according to the expression
Score— Min

Score’ = Max — Min ©
whereMin andMax are the minimum and maximum possible values for each score
metric, so that all normalized scores fall between 0.0 af@dviith 1.0 representing
a perfect match. In Equation & and 3 are coefficients used to weight the face
and iris biometrics, respectively. In the presented wark; 1 — 3 for simplicity. In
Equation 5,SumScore, represents the final match score for the given probe video
with gallery subjeck; the best match score can be determined by finding the maxi-
mumSumScore for all k. Sumiris is the special case where= 0 andf3 = 1, which
corresponds to summing only the iris scores to determinbdsematch. Similarly,
SumFace is the case wheme= 1 and3 = 0, and equates to summing only the
normalized face scores.

6 Experiments

The previously described multi-biometric system was tesie a probe dataset of
1,886 IOM video sets. Note that here a video “set” referséatirresponding videos
from each of the three IOM cameras, so the dataset is condprfde658 videos in

total. The 1,886 videos spanned 363 unique subjects, widvarage of about five
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Fig. 6 Images of the same iris image using the LG4000 (left) and the ICit)i The IOM image
shown on the right represents a well-focused IOM iris image.

videos per subject. The most frequently occurring probgestithad 15 videos in
the probe set, and the least frequently occurring had orteeprialeo.

The iris gallery contained one left eye and one right eye farheof the 363
gallery subjects. The gallery images were acquired usiad-th IrisAccess 4000
(LG4000) [8], a high-quality iris acquisition camera, ahe gallery was manually
screened for good quality and segmentation. For comparisgare 6 shows an
example of an image of the same iris acquired from both thed0B4nd the IOM.

The face gallery contained one full face image for each o8& subjects. The
gallery images were acquired using the IOM. Each of the 36%sts in the study
had an additional IOM video set acquired in which the presari@ whole face was
verified manually. The frames were stitched using the ppesviously described,
and then the best frame was manually selected and the catadiof the eye centers
were manually annotated for alignment. The PCA training paormed on the
face image gallery.

6.1 Detection Results

Across the entire dataset, 14,829 left irises and 14,711t iigges were detected
and successfully segmented, and 9,833 faces were deteitteehlid eye locations
for alignment. In this context, “successful segmentatisiniply means that the iris
segmentation routine returned pupil and limbic boundaitedoesnot guarantee
correctness. On average, 1547 8.1) irises, 5.2 ¢ = 3.7) faces, and 20.99(=
20.9) of either biometric samples were found in each video.

Table 1 provides a breakdown of the detection results bydranmd video. The
1,886 videos were composed of a total of 28,381 frames. FabiteTl it can be seen



14 Ryan Connaughton, Kevin W. Bowyer, and Patrick Flynn

that while a large number of frames (44.1%) contained noctiedfeatures, a much
larger percentage of the probvedeos (99.3%) had at least one biometric feature
detected. Further, the majority (80.6%) of the probe videmstained samples of
face and both iris features.

Table 1 Detailed Detection Results

Modalities Detected Frame Count Video Count
Left Iris (Only) 1,447 (5.1%) 35 (1.9%)
Right Iris (Only) 2,104 (7.4%) 46 (2.4%)
Face (Only) 900 (3.2%) 2 (0.1%)

Left & Right Irises (Only) 2,495 (8.8%) 209 (11.1%)
Face & Left Iris (Only) 1,411 (5.0%) 34 (1.8%)
Face & Right Iris (Only) 724 (2.6%) 27 (1.4%)
Face, Left, & Right Irises 6,798 (24.0%) 1,522 (80.6%)
None 12,502 (44.1%) 11 (0.6%)

6.2 Matching Results

Figure 7 shows the match and non-match score distributimmallf 9,833 detected
faces. The mean match score was -0.281 with a standard idevidit0.213, while
the mean non-match score was 0.000 with a standard devtib676. If each face
were treated independently, the rank-one recognitionegeki for the 9,833 probes
faces would be 51.6% (5,073/9,833) recognition.

The results from the left and right irises were aggregatad, Eigure 8 shows
the match and non-match score distributions. The mean rsatirke was 0.398 with
a standard deviation of 0.053, while the mean non-matcheseas 0.449 with a
standard deviation of 0.013. Figure 8 shows a significantbarmof match com-
parisons with fairly high scores. Upon examination of théad#& was found that
most of these scores arise from incorrect segmentatiororirescases, these high
match scores were caused by severe image defocus. Addlifjiachare are some
false positives from the eye detector (non-eye regiond)chiatain features that re-
semble pupil and limbic boundaries according to the segatientroutine. If each
iris image were treated independently, the rank-one ratiograchieved for all of
the probe irises would be 46.6% (13,556/29,112) recognitio

6.3 Fusion Results

The results of the iris and face matchers were combined wesigh of the meth-
ods previously described. The rank-one recognition ratbgsed by each fusion
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Match and Non-Match Score Distributions for Face Matcher
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Fig. 7 The match and non-match score distributions for the face feafuwen the entire probe
dataset.

approach are shown in Table 2. In the fusion methods basedalaRounts, the
number of votes given to each sample was varied between 1 &h¢tt3ough all
samples were given the same number of votes for any giveorfesiperiment), and
the best results for each approach are presented. Similaslylts from the optimal
tested values aff andf3 are presented.

Summarizing, the best single-modality fusion approach th&sSumlris ap-
proach, which achieved an 87.8% rank-one recognition Taie SumBoth approach
achieved the overall highest recognition rate (93.2%), @hchulti-modal fusion

Table2 Rank One Recognition Rates for Fusion Approaches

Approach Fusion Parameters Rank-One (Raw)
Minlris 86.7% (1,635/1,886)
MinFace 62.6% (1,180/1,886)

Bordalris-Linear v=3 86.4% (1,629/1,886)
Bordalris-Exponential v=20 86.8% (1,637/1,886)
BordaFace-Linear v=3 58.9% (1,110/1,886)
BordaFace-Exponential v=>5 59.3% (1,118/1,886)
BordaBoth-Linear v=10 91.7% (1,729/1,886)
BordaBoth-Exponential v=10 92.0% (1,735/1,886)
Sumlris a=00,3=10 87.8% (1,656/1,886)
SumFace a=103=00 61.3% (1,156/1,886)
SumBoth a=03p=07 93.2% (1,757/1,886)
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Match and Non-Match Score Distributions for Iris Matcher

—— Match
—— Non-Match / |

0.30
1

Fraction of Comparisons
0.15 0.20 0.25
| 1 1

0.10
|

0.05
1

0.00
L

0.20 0.25 0.30 0.35 0.40 0.45 0.50

Hamming Distance

Fig. 8 The match and non-match score distributions for the left and righfeatures from the
entire probe dataset.

approaches achieved higher recognition rates than thenfusethods based on a
single modality.

Figure 9 shows the ROC curves for the best SumBoth and BotHapproaches,
as well as the Minlris, MinFace, SumFace, and Sumiris redolt comparison.
From this graph, it is clear the the BordaBoth and SumBothr@aahes outper-
form the single-modality fusion methods. Interestinglyhile SumBoth achieved
the highest rank-one recognition rate, Figure 9 shows thetBordaBoth fusion
technique performs better at false positive rates lessQtGh

In general, the videos that failed to match correctly tylychad relatively few
face and iris features detected. While the iris proved to bertbre accurate of the
two modalities in the multi-sample fusion scenarios, Fég8rindicates that many
of the iris features detected are of poor quality, repref@sé detections from the
eye detector, or failed to segment correctly. While the fugegchniques in these
experiments were able to overcome these challenges whemglersamples were
present, videos in which a small number of faces and iris erectied are much less
likely to be correctly matched.

7 Conclusions

This chapter presents an investigation into the fusione# &nd iris biometrics from
a single sensor, a surprisingly understudied problem ireatititerature. The previ-
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ROC Curve for Fusion Methods
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0.00 0.05 0.10 0.15 0.20

False Positive Rate

Fig. 9 ROC curves for the various fusion methods using the optimal tesegimeters for each.
The BordaBoth method shown is the BordaBoth-Exponential ntetho

ously described multi-biometrics framework utilizes mslimple, multi-instance,
and multi-modal fusion techniques to improve recognitiates from a single sen-
sor. The multi-biometric system is tested on a non-chimeaiaset of over 1,886
videos spanning 363 subjects. This represents one of tgestagenuine multi-
modal experiments that has been conducted to date. Facesabidimetric samples
extracted from videos produced from the Iris on the Move sewsre combined us-
ing several different fusion methods. In these experimehescombination of face
and iris biometrics via match score summation yielded a Snt¥ease in recogni-
tion rate over the best single-modality approach that wstede while a modified
Borda count approach performed best at lower false poséites & 0.06).

The multi-biometrics system proposed exploits the facermftion collected by
the IOM, a sensor that is intended for iris recognition pgg® with no modifi-
cations to the sensor and no increase in probe data acguisitie. The resulting
system is less likely to experience failures to acquire,thadise of multiple modal-
ities could allow the system to identify subjects with inqaete gallery data. This
approach could be extended to operate on other stand®#erisors, which often
detect the face as a preliminary step to iris image acqoisiti
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