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Abstract—The issue of interoperability between iris sensors is
an important topic in large-scale and long-term applications of
iris biometric systems. This work compares three commercially
available iris sensors and three iris matching systems and investi-
gates the impact of cross-sensor matching on system performance
in comparison to single-sensor performance. Several factors
which may impact single-sensor and cross-sensor performance
are analyzed, including changes in the acquisition environment
and differences in dilation ratio between iris images. The sensors
are evaluated using three different iris matching algorithms, and
conclusions are drawn regarding the interaction between the
sensors and the matching algorithm in both the cross-sensor and
single-sensor scenarios. Finally, the relative performances of the
three sensors are compared.

Index Terms—biometrics, iris recognition, sensor evaluation,
interoperability

I. INTRODUCTION

S
ENSOR technology for iris biometrics is evolving, with

many companies releasing new sensors and improving ex-

isting sensors. This motivates an investigation of whether these

sensors are interoperable. Several studies have investigated

the interoperability of fingerprint, voice, and signature sensors

[1],[2],[3],[4]. Additionally, some researchers have reported on

sensor safety, illumination, and ease-of-use for iris recognition

systems [5]. Other work has explored environmental and

operational factors and their impact on biometric systems

[6],[7],[8]. Nevertheless, few studies have been conducted to

investigate the interoperability of iris sensors from varying

manufacturers using multiple available matching algorithms.

This work explores sensor interoperability using three com-

mercially available iris sensors by comparing results from

single-sensor and cross-sensor experiments. Each of the three

sensors examined in this study is used for iris enrollment and

recognition in the field today. Additionally, three different al-

gorithms are used to perform iris matching, which may provide

a less biased context in which to compare sensors, as well as
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offer some insight into the effect of the algorithm on single-

sensor and cross-sensor performance. Further, we investigate

the impact of several external factors on sensor performance.

We analyze the performance of each single-sensor and cross-

sensor experiment to address several questions, including the

following:

• How do subtle changes in environmental conditions and

the order of sensors impact performance?

• How does pupil dilation affect sensor performance?

• How does cross-sensor performance between two sensors

relate to the corresponding single-sensor performances?

• Is relative sensor performance consistent across matching

algorithms?

• Can a relative sensor ranking be established?

The remainder of this paper is organized as follows. Sec-

tion II discusses previous studies of the interoperability of

iris biometric sensors. Section III describes each sensor, the

experimental setup, the dataset, and the algorithms used to

evaluate the three iris sensors. Various results produced by

the three matching algorithms are shown and discussed in

Section IV, and Section V concludes with general observations

regarding the iris sensors and data comparisons.

II. RELATED WORK

Since iris biometrics is increasingly becoming a large-scale

application in which data is kept and used for long periods

of time, the interoperability between iris sensors has become

a recent topic of interest. Bowyer et al. investigated cross-

sensor and cross-session comparisons using two iris sensors,

the LG IrisAccess 4000 (LG 4000) and LG IrisAccess 2200

(LG 2200), and a single matching algorithm [9]. The authors

found that the LG 2200 provided a less desirable match score

distribution, which led to an even less desirable cross-sensor

match score distribution. They concluded that if the LG 4000

was used to collect enrollment data and the LG 2200 was

used to collect probe data, the system would achieve higher

recognition rates than if the LG 2200 was used for enrollment

and the LG 4000 was used to acquire probe data.

In 2005, International Biometrics Group (IBG) evaluated

the performance of three of the most widely used iris acqui-

sition and recognition systems at that time [10]. The authors

evaluated each system through several criteria - false accept

and reject rate, failure to enroll rate, failure to acquire rate,

acquisition time, subject usability, and performance over time.

The investigation showed that the sensor with the lowest

failure to enroll rate had less robust matching over time than

the sensor with a higher failure to enroll rate. The sensors were
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evaluated in both a single-sensor and cross-sensor context, but

only one matching algorithm was used for the experiments.

In 2007, Authenti-Corp published an evaluation of three

commercial sensors, though the sensors were not identified in

the report [11]. The sensors were compared in both single-

sensor and cross-sensor contexts using a single matching

algorithm. The authors reported that one of the sensors

performed best in a single-sensor context, while the other

two sensors performed best in cross-sensor contexts. They

conclude that further investigation is required to understand

which image characteristics have the largest impact on sensor

interoperability.

A survey report from 2009 presented the state of the art in

third-party iris system evaluations [12]. The report summarized

three third-party evaluations, including the IBG and Authenti-

Corp reports. The third evaluation was the Iris Evaluation

Challenge (ICE 2006) conducted by the National Institute

of Standards and Technology (NIST), which evaluated three

separate algorithms using data from a single sensor [13]. The

survey noted that despite differences in hardware and software,

all three studies reported false reject rates on the same order

of magnitude when measured at a false accept rate of 0.001

[12].

Many factors can affect the accuracy of iris biometrics

systems. These factors include, but are not limited to, pupil

dilation [14], time lapse between enrollment and recognition

[15], and contact lenses [16]. Some sensors may be more

or less sensitive to these factors than others, according to

the optics, illumination technique, hardware, and software of

each sensor. In the IBG evaluation and other reports such as

that performed by Du [5], the illumination schemes, sensor

optics, and usability were evaluated. In our study we include

an investigation of how the role of pupil dilation and algorithm

selection affect interoperability of sensors.

Little previous work has been done on the effect of pupil

dilation on sensor interoperability. Though the most obvious

cause of pupil dilation is a low ambient light level, it has been

shown that other factors such as age, medications, diseases,

trauma, and stress can cause a change in pupil dilation. NIST

has conducted several studies regarding the performance of iris

biometrics given variations in pupil dilation [17]. To evaluate

the effects of pupil dilation, Hollingsworth et al. considered

the difference in dilation ratio between pairs of images [18].

Image pairs were grouped based on their difference in dilation

ratios, and the performance of each group was examined.

The authors showed that smaller differences in dilation ratio

allows better performance. Because of this, recent research has

been conducted regarding enrollment strategies based on pupil

dilation [19].

The matching algorithm used to perform iris recognition

also plays a large role in determining the performance of

the system. In 2009, NIST released the IREX report com-

paring several algorithms using three iris datasets [17]. The

IREX evaluation mostly measured algorithm performance with

respect to run-time analysis and expense of computations.

However, the authors also found that the choice in the iris

recognition algorithm is more influential on the outcome given

standardized iris images than in other biometrics, such as

fingerprint.

In previous work, we compared single-sensor and cross-

sensor results from four sessions of data in which changes

in environmental conditions were minimized throughout all

sessions [20]. These environmental conditions include distance

between sensor and ambient light sources, distance between

sensors, and height of sensor relative to subject. Experiments

were conducted to analyze the relationship between cross-

sensor and single-sensor performance, as well as the role

the algorithm played in performance. As an extension of this

work, we considered a second set of four sessions and analyze

the impact of several other factors on system performance,

including sensor order in the acquisition studio and dilation

ratio in acquired images.

An important consideration when comparing sensor perfor-

mance is the size of the dataset used to conduct the analy-

sis. In the proceedings of Biometrics: Theory, Applications

and Systems in 2010, experiments on iris biometrics were

presented using datasets that ranged from 200 to 2000 iris

images (25 to 264 unique subjects) [21],[22]. The experiments

described in our cross-sensor study are conducted on a dataset

of nearly 50000 iris images (630 unique subjects) and therefore

represents a large improvement in the state of the art.

III. METHODS

A. Sensors

In this work, three commercially available iris sensors

are compared in a cross-sensor and cross-session context to

evaluate both the performance of each individual sensor and

the interoperability between the sensors.

The first sensor used in this study is the IrisGuard AD100,

referred to as the IrisGuard in this work [23],[24]. The

IrisGuard is a dual eye iris capture sensor which employs

direct and cross illumination through the use of two clusters of

6 near infrared (NIR) LED illuminators [25]. Subjects must

be approximately 8 to 12 inches away from the camera for

image capture to occur. In our acquisition process, 4 images

were taken of each eye after one prompt of the camera. The

firmware for this sensor calculates the amount of motion,

measured by the level of activity of the eye, and determines

whether each subject is using contact lenses or glasses and

adjusts illumination accordingly [24].

The second sensor used is the LG IrisAccess 4000, referred

to as the LG 4000 in this work, and it is also a dual capture

iris sensor [26]. It makes use of two clusters of 12 NIR LED

illuminators of varying wavelengths, which provide cross and

direct illumination of both irises [27]. For acquisition to occur,

a subject must be approximately 14 inches away with their

eyes centered in a reflective acquisition window. In the first

two acquisition sessions, three sets of images were captured

and the subject was prompted by the camera after each capture.

However, our capture software was upgraded after the second

acquisition session such that four sets of images were captured

after only one camera prompt, but no changes were made to

the firmware or quality scoring.

The third sensor used in the study is the LG TD100, referred

to as the TD100 in this work [28]. The TD100’s intended
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Fig. 1. Images of the three iris sensors used in this study. From left to right: the LG IrisAccess 4000, the IrisGuard AD100, and the LG TD100.

IrisGuard Image 04233d3014 LG 4000 Image 04233d3004 TD100 Image 04233d3010

Fig. 2. Images of the same iris taken by each of the three sensors during the same acquisition session. The LG 4000 image includes padding inserted by
the sensor’s firmware to maintain the 640x480 pixel image size. The contrast in each image appears different according to the illumination and hardware of
each sensor.

use is as a handheld face and dual iris capture camera, but

it can also be mounted on a tripod for stationary use. A

subject’s eyes must be positioned approximately 13 inches

from the sensor and centered in a reflective window. Clusters

of LEDs of multiple wavelengths of NIR illumination are used

to illuminate the iris. This sensor does not prompt the subject,

so an operator must provide verbal instructions to the subject,

which results in a variable acquisition time. Three sets of

images per subject were acquired using this sensor throughout

the entirety of the acquisition sessions.

Though it is worth noting that two of the sensors, the LG

4000 and the TD100, are made by the same manufacturer,

our cross-sensor evaluation still provides an analysis of three

state of the art sensors. While other sensors could be included

in future studies, these three sensors operate under similar

acquisition conditions, including stationary subjects, near-

infrared illumination, and tripod-mounted cameras.

B. Acquisition Process, Dataset, and Algorithms

For acquisitions, each sensor was used to collect left and

right iris images for subjects over a span of several weeks

under a human subjects protocol approved by the Notre Dame

Human Subjects Institutional Review Board. Each sensor was

mounted on a tripod and adjusted to each subject’s height,

and the tripods were placed in a row with equal spacing such

that all three sensors were equidistant from the visible light

sources in the acquisition studio. The controlled environment

was designed to provide similar acquisition conditions for

each sensor. Subjects approached the IrisGuard, LG 4000, and

TD100 in succession with little time between each acquisition.

Example images of the same iris acquired by each of the

three sensors are shown in Figure 2. Images were acquired

using the default settings for each sensor. Additionally, in all

acquisition sessions, multiple images were acquired for each

subject using each sensor, and the amount of time between

successive image acquisitions varied from near-instantaneous,

as with the IrisGuard, to several seconds, as with the TD100.

All three sensors produced 640x480 pixel grayscale images.

The complete dataset was collected in eight acquisition

sessions, which spanned a total of 21 weeks. Within this

dataset, there are two subsets. The first subset contains four

sessions (Sessions 1-4), which spanned over 12 weeks. Dur-

ing this time, the sensors were ordered such that subjects

approached the IrisGuard, the LG 4000, and finally the TD100

sequentially. Additionally, the sensors were moved from one

corner of the acquisition studio to another between Sessions

1 and 2, while attempting to maintain the same environmental

conditions in the studio. Within Sessions 1-4, 23444 iris

images were collected, spanning 510 unique subjects (1020

unique irises). Table I shows a detailed breakdown of the

number of iris samples collected and subjects involved in

Sessions 1-4 of the acquisitions.

The second subset also covers four sessions of acquisitions,

which spanned over 9 weeks and took place after the entire

first subset was collected. For this subset (Sessions 5-8),

the sensors were rearranged such that the LG 4000 was
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approached first, followed by the IrisGuard, and finally TD100.

In Sessions 5-8, though the order of the sensors was changed,

the sensors were in the same locations as in Sessions 2-

4. Sessions 5-8 contain a total of 25921 iris images from

476 unique subjects (952 unique irises). Table II shows the

breakdown of samples and subjects from Sessions 5-8. The

entire dataset (Sessions 1-8) thus consists of 630 unique

subjects, or 1260 unique irises, and a total of 49365 iris

images. Further, 310 of the total subjects were male and 320

were female, with ages ranging from 19 to 64 and an average

age of 23. Also, 498 of the subjects reported their race to

be ”White”, 32 reported ”Asian”, and the remaining reported

more specific or unknown race.

In general, the number of images acquired within a particu-

lar session vary across sensors due to differences in acquisition

software. Additionally, images for some subjects are missing

for particular sensors due to operator errors.

Three iris matching algorithms - M1, M2, and M3 - were

used to compare irises acquired from different acquisition ses-

sions. One the three matchers is an in-house implementation,

while the other two are commercially available.

IV. RESULTS

In order to perform matching experiments using images

from each of the three sensors, a preprocessing stage was

required in which each of the three matching algorithms was

used to extract an iris template from each of the original

images. To create these templates, the irises were segmented

and features extracted using techniques specific to each algo-

rithm. In some cases, the algorithms were unable to produce

templates for particular images. Table III shows the breakdown

of failed segmentations for the dataset by sensor and algorithm.

The failure to create a template can stem from many sources,

such as occlusion, blur, and illumination. However, since we

cannot obtain data about how the segmentations are performed,

we cannot report the exact reason why a particular image

failed. Summarizing, images from the TD100 produced the

most segmentation failures for M1 and M2, while the LG

4000 produced the most failures for M3. Any image which

failed to produce a template using a particular algorithm was

omitted from all experiments using that matching algorithm. It

should also be noted that successful template generation does

not guarantee correct segmentation.

M1, M2, and M3 were each used to compare iris templates

from different acquisition sessions. The following sections

each describe the results from a different perspective; con-

clusions are drawn from the matching results with respect to

particular factors. In Section IV-A, we first consider the impact

of environmental conditions on each sensor. Section IV-B

considers pupil dilation as a cause for variations in perfor-

mance and shows how this affects the performance of single

and cross-sensor experiments. Next, Section IV-C observes

relationships between single and cross-sensor performance for

each of the experiments. Section IV-D summarizes the role

of the algorithm in determining sensor performance according

to our results, and we finally conclude with Section IV-E, in

which we determine whether a relative sensor ranking can be

established based on the performance of each sensor in our

experiments.

The matching results used in each discussion are divided

based on the sensors used to acquire the images. Specifically,

there were three single-sensor experiments:

• IrisGuard vs. IrisGaurd

• LG 4000 vs. LG 4000

• TD100 vs. TD100

Similarly, there were three cross-sensor experiments:

• IrisGuard vs. LG 4000

• IrisGuard vs. TD100

• LG 4000 vs. TD100

For example, the IrisGuard vs. IrisGuard experiment for

Sessions 1-4 compares all pairs of images collected using

the IrisGuard during Sessions 1-4, omitting image pairs that

originated from the same session. Similarly, the IrisGuard vs.

LG 4000 experiment for Sessions 1-4 compares all images

collected using the IrisGuard to all images collected using the

LG 4000 from Sessions 1-4, again omitting image pairs ac-

quired during the same session. Each experiment was repeated

using each of the three matching algorithms. Comparisons

between image pairs originating from the same session were

omitted from our results because same-session comparisons

tend to produce unnaturally good performance and are not

representative of practical biometric applications.

A. How Do Environmental Conditions Impact Performance?

In Sessions 1-4, changes in environmental conditions were

minimized throughout all sessions. These environmental con-

ditions include distance between sensor and ambient light

sources, distance between sensors, and height of sensor relative

to subject. To measure the effect of sensor order on perfor-

mance, we also considered Sessions 5-8, in which the sensors

were placed in the same locations but in a different order; we

hypothesize that this reordering should not effect the relative

performance of each experiment. In Sessions 1-4, subjects

approached the IrisGuard, then the LG 4000, and finally the

TD100, while in Sessions 5-8, the subjects approached the LG

4000, then the IrisGuard, and lastly the TD100.

Figure 3 shows ROC curves from the cross-sensor and

single-sensor experiments using data from Sessions 1-4, 5-

8, and 1-8 for all three matchers. The number of match

and non-match comparisons used in each experiment varied

depending on both the sensor and matching algorithm. In

some cases, the matching algorithms filtered out comparisons

which could not generate match scores above a particular

confidence threshold; these comparisons are omitted from the

results presented in this work. The total number of match and

non-match comparisons used in each experiment are shown in

Table IV. Table V shows a corresponding breakdown of match

and non-match comparisons for Sessions 5-8. Further, on each

curve in Figure 3, error bars are shown, which represent 95%

confidence intervals calculated via bootstrapping. In particular,

match and non-match scores were subsampled according to

their score distributions, and an ROC curve was generated for

each of 5000 bootstraps and used to create the error bars. If

two error bars at a particular FAR do not overlap, then the
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TABLE I
DETAILED ACQUISITION SUMMARY - SESSIONS 1-4

Session 1 Session 2 Session 3 Session 4 Total

IrisGuard
2080 Samples 1671 Samples 2345 Samples 2191 Samples 8287 Samples
265 Subjects 212 Subjects 302 Subjects 278 Subjects 491 Subjects

LG 4000
1606 Samples 1584 Samples 2457 Samples 2651 Samples 8298 Samples
269 Subjects 266 Subjects 302 Subjects 319 Subjects 506 Subjects

TD100
1579 Samples 1568 Samples 1799 Samples 1913 Samples 6859 Samples
269 Subjects 267 Subjects 301 Subjects 320 Subjects 509 Subjects

TABLE II
DETAILED ACQUISITION SUMMARY - SESSIONS 5-8

Session 5 Session 6 Session 7 Session 8 Total

IrisGuard
1939 Samples 2131 Samples 2624 Samples 2568 Samples 9262 Samples
247 Subjects 269 Subjects 332 Subjects 324 Subjects 463 Subjects

LG 4000
2273 Samples 2366 Samples 2658 Samples 2600 Samples 9897 Samples
278 Subjects 297 Subjects 334 Subjects 327 Subjects 476 Subjects

TD100
1642 Samples 1775 Samples 2002 Samples 1343 Samples 6762 Samples
274 Subjects 296 Subjects 334 Subjects 224 Subjects 456 Subjects

TABLE III
FAILED TEMPLATE GENERATIONS

M1 M2 M3

IrisGuard
Sessions 1-4 0 Images 0 Images 2 Images
Sessions 5-8 0 Images 3 Images 2 Images
Total 0 Images 3 Images 4 Images

LG 4000
Sessions 1-4 0 Images 6 Images 66 Images
Sessions 5-8 0 Images 2 Images 203 Images
Total 0 Images 8 Images 269 Images

TD100
Sessions 1-4 0 Images 11 Images 20 Images
Sessions 5-8 1 Image 12 Images 7 Images
Total 1 Images 23 Images 27 Images

difference between the two curves at that FAR is statistically

significant. However, if the error bars of two curves do overlap,

statistical significance cannot be determined without further

testing. This method is based upon the technique described by

NIST [29]. Using these results, a relative ordering of sensor

performance can be established by comparing true accept rate

at a particular false accept rate.

By comparing the relative ordering of the sensor perfor-

mances, we can see that there are variations between the results

of each session group. For example, considering the single-

sensor experiments using M1 on Sessions 1-4, we see that

the TD100 vs TD100 experiment had the worst performance.

For Sessions 5-8, however, the LG 4000 vs LG 4000 had the

worst performance, though the difference between the TD100

vs TD100 and LG 4000 vs LG 4000 was not determined to be

statistically significant for Sessions 5-8. The same reordering

between Sessions 1-4 and Sessions 5-8 was observed using

M3. Because all environmental conditions were sustained as

best as possible between all sessions, it was hypothesized that

the relative ordering of sensor performances would not change

between Sessions 1-4 and Sessions 5-8. However, since this

was not the case, further analysis is required to explore the

causes of this reordering.

In order to determine a possible cause of this difference, we

examined ROC curves generated by single sessions in order to

see if one session had a particularly positive or negative effect

on the overall performance. Namely, for each single-sensor

and cross-sensor experiment, an ROC curve was generated

for each session where a score contributed to the curve if

one of the images which generated that score was acquired in

that session. When this new separation of data was examined,

an interesting trend appeared in several experiments for all

matchers. Session 1 data performed significantly different than

data from the other seven sessions.

Although all environmental conditions described were con-

trolled between all sessions, one difference was noted in

Session 1; the sensors were placed in a different corner of

the acquisition studio. Thus although they were the same

distance from ambient illuminants, it is possible the ambient

lighting was varied, or that some other unknown environmental

condition caused an unexpected variation in the data. In order

to compare only data acquired in exactly the same location,

ROC curves using data only from sessions 2-4 were generated

and relative sensor performances were determined using these

results. Comparing the relative ordering of performances be-

tween sessions 2-4 and Sessions 5-8, the ordering between the

two session groupings appeared to be more closely related;

yet, it appears that Session 1 did not account for all of

the variation between Sessions 1-4 and 5-8, and therefore

some other environmental conditions may have caused some

variation in performance.

Based on these experiments, it appears that slight changes

in environment can cause a change in both single-sensor and

cross-sensor performance. Further, it appears that the ordering

of sensors during acquisition had less of an effect than other

environmental conditions, but it may still have had some

influence on performance. Hence, it is important to explore

the implications of changing an acquisition environment, even
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TABLE IV
NUMBER OF MATCH AND NON-MATCH COMPARISONS IN EACH EXPERIMENT - SESSIONS 1-4

M1 M2 M3

IrisGuard v IrisGuard
Match = 28,207 Match = 28,207 Match = 28,188

Non-Match = 12,786,533 Non-Match = 12,786,533 Non-Match = 12,772,638

LG 4000 v LG 4000
Match = 27,488 Match = 27,453 Match = 26,835

Non-Match = 12,648,502 Non-Match = 12,629,379 Non-Match = 12,330,790

TD100 v TD100
Match = 18,930 Match = 18,903 Match = 18,836

Non-Match = 8,780,601 Non-Match = 8,752,069 Non-Match = 8,714,118

IrisGuard v LG 4000
Match = 55,542 Match = 55,494 Match = 54,817

Non-Match = 25,548,861 Non-Match = 25,530,015 Non-Match = 25,199,025

IrisGuard v TD100
Match = 46,063 Match = 46,031 Match = 45,927

Non-Match = 21,216,720 Non-Match = 21,181,421 Non-Match = 21,123,435

LG 4000 v TD100
Match = 45,787 Match = 45,721 Match = 45,071

Non-Match = 21,156,602 Non-Match = 21,105,682 Non-Match = 20,848,573

TABLE V
NUMBER OF MATCH AND NON-MATCH COMPARISONS IN EACH EXPERIMENT - SESSIONS 5-8

M1 M2 M3

IrisGuard v IrisGuard
Match = 38,848 Match = 38,824 Match = 38,819

Non-Match = 15,963,016 Non-Match = 15,952,339 Non-Match = 15,947,408

LG 4000 v LG 4000
Match = 43,844 Match = 43,820 Match = 41,234

Non-Match = 18,296,493 Non-Match = 18,288,986 Non-Match = 17,135,077

TD100 v TD100
Match = 20,920 Match = 20,843 Match = 20,837

Non-Match = 8,493,137 Non-Match = 8,465,585 Non-Match = 8,464,479

IrisGuard v LG 4000
Match = 82,229 Match = 82,181 Match = 79,592

Non-Match = 34,200,919 Non-Match = 34,182,565 Non-Match = 33,165,299

IrisGuard v TD100
Match = 57,215 Match = 57,099 Match = 57,081

Non-Match = 23,419,745 Non-Match = 23,373,157 Non-Match = 23,366,966

LG 4000 v TD100
Match = 60,757 Match = 60,635 Match = 58,684

Non-Match = 25,024,704 Non-Match = 24,978,771 Non-Match = 24,160,176

TABLE VI
NUMBER OF MATCH AND NON-MATCH COMPARISONS IN EACH EXPERIMENT - SESSIONS 1-8

M1 M2 M3

IrisGuard v IrisGuard
Match = 148,802 Match = 148,742 Match = 111,207

Non-Match = 67,047,095 Non-Match = 67,023,993 Non-Match = 50,390,576

LG 4000 v LG 4000
Match = 157,789 Match = 157,629 Match = 109,456

Non-Match = 71,921,310 Non-Match = 71,856,781 Non-Match = 49,750,487

TD100 v TD100
Match = 88,725 Match = 88,472 Match = 64,882

Non-Match = 40,411,729 Non-Match = 40,281,028 Non-Match = 29,420,719

IrisGuard v LG 4000
Match = 305,143 Match = 304,919 Match = 219,858

Non-Match = 139,019,688 Non-Match = 138,934,027 Non-Match = 100,492,823

IrisGuard v TD100
Match = 229,379 Match = 229,009 Match = 134,525

Non-Match = 104,288,109 Non-Match = 104,099,125 Non-Match = 59,621,531

LG 4000 v TD100
Match = 237,025 Match = 236,584 Match = 132,706

Non-Match = 108,043,861 Non-Match = 107,819,975 Non-Match = 58,885,111

when the environment change may seem to be trivial.

B. How Does Pupil Dilation Affect Sensor Performance?

There are many image factors which may affect recognition

performance, including pupil dilation, iris diameter, image

focus, and occlusion. In our experiments, we analyze the

effect of pupil dilation because dilation statistics were readily

available from all three matching algorithms. Further, while

it is known that pupil dilation has a large impact on iris

biometric performance [18],[14], the effect of dilation on

sensor interoperability is a relatively unexplored problem. It

has been shown in the past that better performance is achieved

when comparing eye images with highly constricted pupils

than when comparing irises with highly dilated pupils [18].

Additionally, work such as Hollingsworth el al. suggests that

performance increases as the difference between the dilation

ratios of the images being compared decreases [14]. This

section presents an analysis of the impact of the difference

between dilation ratios of images in the context of our single

and cross-sensor experiments.

We define the dilation ratio of image i to be

DRi =
Pupil Radiusi

Iris Radiusi
(1)

Using this notation, an image with a more constricted pupil

would have a smaller dilation ratio. The dilatio ratio has a

range between 0.0 and 1.0, though realistic values tend to

fall between 0.2 and 0.6. Table VII shows statistics for the

three sensors according to the segmentation routines of M1,

M2, and M3. Summarizing, images taken using the IrisGuard

generally had smaller dilation ratios than the other two sensor,

and images taken using the LG 4000 generally had larger

dilation ratios than the other two sensors. Further, this trend

was observed in both Sessions 1-4 and Sessions 5-8, and thus
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. ROC curves for Sessions 1-4 (top row), Sessions 5-8 (middle row), and Sessions 1-8 (bottom row) for all three matching algorithms. Note that the
range of y-axis varies between figures.

the relative ordering of the sensors was not a major factor

affecting the dilation ratio of the images acquired. It is likely

that the use of visible light illuminants, in addition to NIR

LEDs, contributed to the smaller dilation ratios observed using

the IrisGuard.

The difference in dilation ratio (DDR) between image i and

image j is defined as

DDRi,j = abs(DRi −DRj) (2)

The DDRs for all comparisons were computed and aggre-

gated for each experiment in this study. To obtain each DDR,

statistics from each software package was obtained regarding

the size of the iris and pupil. The dilation ratio for each image

was then calculated and compared to all other images in an

experiment to obtain DRR’s. As an example, Figure 4 shows

the DDR distributions for all comparisons in the TD100 vs.

TD100 (Sessions 1-4) experiment according to M2, separated

by session. Because no single-session comparisons are used

in this study, the curve for each session represents all com-
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TABLE VII
AVERAGE DILATION RATIO FOR EACH SENSOR

M1 M2 M3

IrisGuard
DR1−4 = 0.374 (σ = 0.051) DR1−4 = 0.342 (σ = 0.051) DR1−4 = 0.343 (σ = 0.052)

DR5−8 = 0.382 (σ = 0.046) DR5−8 = 0.350 (σ = 0.049) DR5−8 = 0.351 (σ = 0.047)

DR1−8 = 0.378 (σ = 0.049) DR1−8 = 0.345 (σ = 0.048) DR1−8 = 0.347 (σ = 0.050)

LG 4000
DR1−4 = 0.417 (σ = 0.066) DR1−4 = 0.383 (σ = 0.062) DR1−4 = 0.389 (σ = 0.065)

DR5−8 = 0.414 (σ = 0.063) DR5−8 = 0.393 (σ = 0.062) DR5−8 = 0.383 (σ = 0.066)

DR1−8 = 0.415 (σ = 0.065) DR1−8 = 0.382 (σ = 0.061) DR1−8 = 0.386 (σ = 0.065)

TD100
DR1−4 = 0.408 (σ = 0.068) DR1−4 = 0.373 (σ = 0.066) DR1−4 = 0.379 (σ = 0.064)

DR5−8 = 0.414 (σ = 0.061) DR5−8 = 0.388 (σ = 0.063) DR5−8 = 0.384 (σ = 0.059)

DR1−8 = 0.411 (σ = 0.065) DR1−8 = 0.376 (σ = 0.063) DR1−8 = 0.382 (σ = 0.062)

Fig. 4. Distributions of difference in dilation ratios for the TD100 vs
TD100 (Sessions 1-4) experiment, separated by session. The x-axis is marked
to indicate the DDR intervals. The region in green indicates DDR Bin1,
the regions in yellow indicate DDR Bin2, and the regions in red indicate
DDR Bin3.

parisons involving one image from that particular session. For

example, the Session 1 curve includes all of the comparisons

between Session 1 TD100 images and any other TD100 image

from Sessions 2-4. As shown in Figure 4, the DDRs using

images from Session 1 are dramatically different than the

DDRs from the other sessions. This trend was observed in

all experiments involving Session 1, but was less pronounced

in experiments involving the LG 4000. Upon investigation, it

was found that images from Session 1 from all three sensors

had much smaller dilation ratios than images taken from the

other seven sessions. As an example, the average dilation ratio

for the TD100 images from Session 1 was 0.320, whereas the

average dilation ratio for TD100 images from Sessions 2-8

was 0.383. This change in dilation ratio was less dramatic for

the LG 4000; the average dilation ratio was 0.354 for Session

1 and 0.384 for Sessions 2-8. As mentioned in Section IV-A,

the images in Session 1 were acquired with the sensors in a

different location than the images acquired in Sessions 2-8,

and this environment change is likely to be the cause of the

change in dilation ratios between the sessions.

To analyze the impact of the DDR on system performance,

Fig. 5. ROC curves for the TD100 vs TD100 (Sessions 1-4) experiment, sep-
arated by DDR interval. The black curve indicates the combined performance
of all DDR intervals.

match and non-match comparisons were separated into in-

tervals based on the DDR between each image pair. The

first DDR interval, DDR Bin1, included all comparisons

for which 0 ≤ abs(DDR) < 0.05. DDR Bin2 included

all comparisons for which 0.05 ≤ abs(DDR) < 0.1. The
final DDR interval, DDR Bin3, included all comparisons

for which abs(DDR) ≥ 0.1. Figure 4 indicates the three

DDR intervals along the x-axis. From Figure 4 it can be

seen that Sessions 2-4 have DDR distributions centered within

DDR Bin1, while the DDR distribution for Session 1 is

centered within DDR Bin2.

ROC Curves were generated for each DDR interval for each

cross-sensor and single-sensor experiment. Figure 5 shows

theses ROC curves for the TD100 vs TD100 (Sessions 1-4).

Summarizing, DDR Bin1 had the best performance, while

DDR Bin3 by far had the worst performance. In the case

of the TD100 vs TD100 experiments, we could not claim sta-

tistical significance between the performance of DDR Bin1

and DDR Bin2 at any FAR, but the relative ordering of

performance of the three DDR intervals was consistent across

all single-sensor and cross-sensor experiments using all three
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matchers. These results support the claim that lower DDRs

yield higher performance in both single-sensor and cross-

sensor contexts.

Figures 6a-f show the ROC curves for DDR Bin1 and

DDR Bin2 using all three matching algorithms on Sessions

5-8. In all cases, performance decreased for DDR Bin2

when compared to DDR Bin1. We observed that the relative

ordering of experiment performance between DDR intervals

was mostly unchanged (aside from statistical noise) for all

matchers and sensor combinations. The exception to this was

the IrisGuard vs LG 4000 experiment using M2. In Figure 6c,

the IrisGuard vs LG 4000 experiment was among the worst at

an FAR of 0.001 for DDR Bin1. In Figure 6d, we see that

this combination of sensors performs significantly better than

the other sensor combinations at the same FAR, indicating

that it was particularly robust to changes in DDR. This trend

was not observed using the other matching algorithms. In

Sessions 1-4 using M2 (not shown for space considerations),

the IrisGuard vs LG 4000 was fairly robust to changes in

DDR, although its performance difference from several other

experiments was not statistically significant for DDR Bin1

and DDR Bin2. For both Sessions 1-4 and Sessions 5-8, the

IrisGuard vs LG 4000 experiment performed significantly bet-

ter than all other sensor combinations for DDR Bin3 as well.

These results suggest that some combinations of algorithms

and sensors are more robust to dilation ratio differences.

The environment changes between Session 1 and Session

2 caused a dramatic change in the dilation ratios of the

images acquired using all three sensors, though the change

was noticeably smaller for the LG 4000. This fact, along with

the results shown in Figures 6a-f could account for some of

the performance difference between Sessions 1-4 and Sessions

2-4 for all of the experiments; the inclusion of Session 1

results in an average increase in DDR, which negatively affects

performance. Further, this has an insignificant impact on the

LG 4000 vs LG 4000 experiments, as the change in average

dilation ratio was smallest for this sensor. While the increased

DDR resulting from the inclusion of Session 1 accounts for

some of the performance difference between Sessions 1-4 and

Session 2-4, it does not account for all of the change. Figure 7

shows the ROC curves for DDR Bin1 for M2 for Sessions

1-4. As can be seen, the LG 4000 vs LG 4000 experiment

still performs significantly better than the other experiments

even when DDR is taken into consideration. Further, removing

Session 1 from the experiments still results in a significant

increase in performance for all of the M2 experiments, ex-

cluding the LG 4000 vs LG 4000 experiment. This suggests

that there is still some other unidentified effect resulting from

the Session 1 environment change beyond change in dilation

ratio.

C. What is the Relationship Between Single and Cross-Sensor

Performance?

The results of these matching experiments can also be used

to evaluate the interoperability of each of the three sensors

and to investigate how the single-sensor performance relates

to the cross-sensor performances.

Fig. 7. ROC curves for DDR Bin1 using M2 on Sessions 1-4.

From the M1 results shown in Figures 3a, d, and g, it can

be seen that single-sensor performance is an accurate predictor

of the relative cross-sensor performance; in all session groups

shown, the relative ordering of the cross-sensor experiments

by performance was consistent with the relative ordering of

the single-sensor experiments. For example, in Sessions 1-4,

the IrisGuard vs IrisGuard experiment had the best perfor-

mance of the single-sensor experiments (measured by TAR

at FAR=0.001), followed by the LG 4000 vs LG 4000, and

finally the TD100 vs TD100. Accordingly, the best cross-

sensor performance was the IrisGuard vs LG 4000, followed

by the IrisGuard vs TD100, and finally the LG 4000 vs

TD100. Additionally, in almost all cases, the performance of

each cross-sensor experiment was between the performance

of the corresponding single-sensor experiments. For example,

the performance of the IrisGuard vs LG 4000 experiment was

between the performance of the IrisGuard vs IrisGuard and LG

4000 vs LG 4000 experiments. The exception to this was for

Sessions 1-8, where the LG 4000 vs TD100 was worse than

either single-sensor experiment, though the difference between

the performances of the LG 4000 vs TD100 experiment and

the LG 4000 vs LG 4000 experiment were not determined to

be statistically significant.

Using the M2 results in Figures 3b, e, and h, we see that

single-sensor performance predicts the relative ordering of

cross-sensor performance for Sessions 1-4 and Sessions 1-

8, but not for Sessions 5-8. In Sessions 5-8, the IrisGuard

vs TD100 experiment performs better than the LG 4000 vs

TD100 experiment despite the LG 4000 having better single-

sensor performance than the IrisGuard, though the differ-

ence between the performance of the IrisGuard vs TD100

experiment and the LG 4000 vs TD100 experiment were not

determined to be statistically significant. In all session groups

considered, the IrisGuard vs TD100 performance and the LG

4000 vs TD100 performance were between the performances

of the corresponding single-sensors. The performance of the

IrisGuard vs LG 4000 experiment was always worse than both
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. ROC curves for DDR Bin1 and DDR Bin2 using all three matching algorithms on Sessions 5-8. Note that the range of y-axis varies between
figures.
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corresponding single-sensor experiments, though the differ-

ence between the IrisGuard vs LG 4000 performance and the

IrisGuard vs IrisGuard experiment was not always significant.

Finally, from the results in Figures 3c, f, and i, our ex-

periments showed that using M3, single-sensor performance

did not predict relative cross-sensor performance for Sessions

1-4, where the IrisGuard vs TD100 experiment had the best

cross-sensor performance, despite the TD100 vs TD100 having

the worst single-sensor experiment. In Sessions 1-4, however,

the difference between all three cross-sensor experiments were

not determined to be statistically significant. In Sessions 5-8,

single-sensor performance was an accurate predictor of cross-

sensor performance. In Sessions 1-8, the IrisGuard vs TD100

experiment again had the best cross-sensor performance. In

general, using M3, the relative ordering of single and cross-

sensor performance was more sensitive to the FAR being

considered when compared to the other matching algorithms,

making it hard to derive strong conclusions from this matcher.

We also found that in no case did a cross-sensor experiment

achieve higher performance than both of the corresponding

single-sensor experiments.

D. What is the Role of the Matching Algorithm in Sensor

Performance?

Another perspective from which to look at the results of

these experiments can be observed by examining how the

performance of each sensor was affected by the choice of

matching algorithm. This section makes general observations

about the performance of the three algorithms, and considers

whether relative sensor performance was dependent on the

matching algorithm.

From Figures 3a-i, it is clear that the M1 algorithm

outperformed the other two matching algorithms on all six

experiments for Sessions 1-4, 5-8 and 1-8. Using M1 for

these experiments, the worst TAR at FAR = 0.001 was 0.9975,

achieved by the LG 4000 vs LG 4000 experiment for Sessions

5-8. This TAR was still significantly better than the best

performing experiment from the other two matchers, which

was the IrisGuard vs IrisGuard experiment for Sessions 5-8

using M3 (TAR = 0.9925). The TAR’s for all experiments are

available in Table VIII. Beyond the obvious advantage of using

M1 over the other two algorithms, it is difficult to make any

strong conclusions about the general performance difference

between M2 and M3.

Using Figures 3a-i and comparing the performance of each

experiment across all three matching algorithms, it can be seen

that while the IrisGuard vs IrisGuard experiment had the best

performance in all session groups using M1 and M3, the LG

4000 vs LG 4000 experiment had the best performance in

all session groups using M2. The difference between the LG

4000 vs LG 4000 and IrisGuard vs IrisGuard performances

was statistically significant for Sessions 1-4 and Session 1-8,

though the performances for these two experiments were much

closer for Sessions 2-4 and 5-8. The reason the IrisGuard vs

IrisGuard and LG 4000 vs LG 4000 performances are much

closer for Sessions 2-4 and 5-8 is because the LG 4000 vs

LG 4000 experiment using M2 was particularly unaffected

by the environmental effect that impacted the Session 1 data.

In fact, using M2, the performance of the LG 4000 vs LG

4000 experiment actually had slightly better performance

for Sessions 1-4 than for Sessions 2-4. For M1 and M3,

the Session 1-4 performance for the LG 4000 vs LG 4000

experiment was significantly lower than for Sessions 2-4. This

suggests that M2 may be more robust to small fluctuations in

the undetermined environment factor (as in the case of the

LG 4000 data from Session 1), but is still affected by large

variations. It is also possible that using M2 in combination

with the LG 4000 inherently corrects for the environment

condition. Regardless of whether or not the Session 1 data is

considered in the study, it is clear that compared to the other

sensors in a single-sensor context, the relative performance of

the LG 4000 is better when using M2. In the cross-sensor

context using M2, the IrisGuard vs LG 4000 experiment had

the best performance for all session groups. The LG 4000

vs TD100 experiment outperformed the IrisGuard vs TD100

experiment only in session groups that included Session 1 data,

though the difference between these two experiments was not

determined to be significant.

As previously shown, both M1 and M3 yielded the best

performance when using data collected with the IrisGuard.

Beyond this trend, there is substantial reordering of the relative

performances of the TD100 and LG 4000 depending on which

session groups are considered. This indicates that for these

matchers, the relative performance of the system is more

heavily affected by environmental conditions than by the

choice of sensor.

E. Can a Relative Sensor Ranking be Established?

Finally, the results of the experiments shown in this work

can be used to measure the relative performance of each

sensor. To evaluate the relative performance of each sensor,

we compare the TAR of each experiment at an FAR of 0.001,

while also considering the 95% confidence intervals generated

by the previously described bootstrapping. Table VIII shows

the TAR and error associated with each experiment for ses-

sions 1-4, 5-8, and 1-8.

Using the values in Table VIII, the experiments were

ordered by TAR to show relative ranking by session group,

shown in Table IX. Summarizing, IrisGuard appears to have

the best single-sensor results across all matchers, ranking first

in both M1 and M3, and second in M2 for all sessions. The

LG 4000 has varied performance among the matchers. Using

M2, the LG 4000 vs LG 4000 has the best performance for

all sessions. M1 and M3 rank LG 4000 vs LG 4000 highly

for Sessions 1-4, but low for Sessions 5-8 and 1-8. The final

same sensor experiment, TD100 vs TD100, ranks poorly in

most instances; M2 ranks it at the lowest ranking for all

sessions, whereas M1 and M3 ranked it well for session 5-8 but

poorly otherwise. In general, cross-sensor experiment rankings

showed little consistency. For M1, in Sessions 1-4 and 5-

8 all cross-sensor rankings were between the corresponding

single-sensors. This pattern was not seen for Sessions 1-8

using M1; the LG 4000 vs TD100 performed worse than both

single-sensor experiments, though the difference may not have
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TABLE VIII
TRUE ACCEPT RATES AT A FALSE ACCEPT RATE OF 0.001

M1 M2 M3

IrisGuard vs IrisGuard
Sessions 1-4 0.9997 ± 0.0002 0.9847 ± 0.0014 0.9906 ± 0.0011
Sessions 5-8 0.9992 ± 0.0003 0.9899 ± 0.0010 0.9925 ± 0.0008
Sessions 1-8 0.9996 ± 0.0001 0.9872 ± 0.0006 0.9909 ± 0.0005

LG 4000 vs LG 4000
Sessions 1-4 0.9993 ± 0.0003 0.9912 ± 0.0011 0.9830 ± 0.0015
Sessions 5-8 0.9975 ± 0.0005 0.9915 ± 0.0009 0.9699 ± 0.0016
Sessions 1-8 0.9980 ± 0.0002 0.9914 ± 0.0004 0.9749 ± 0.0009

TD100 vs TD100
Sessions 1-4 0.9978 ± 0.0007 0.9755 ± 0.0023 0.9727 ± 0.0024
Sessions 5-8 0.9986 ± 0.0005 0.9809 ± 0.0019 0.9777 ± 0.0020
Sessions 1-8 0.9981 ± 0.0003 0.9774 ± 0.0010 0.9721 ± 0.0012

IrisGuard vs LG 4000
Sessions 1-4 0.9994 ± 0.0002 0.9844 ± 0.0011 0.9775 ± 0.0012
Sessions 5-8 0.9982 ± 0.0003 0.9889 ± 0.0007 0.9736 ± 0.0011
Sessions 1-8 0.9986 ± 0.0001 0.9867 ± 0.0004 0.9750 ± 0.0006

IrisGuard vs TD100
Sessions 1-4 0.9991 ± 0.0003 0.9793 ± 0.0014 0.9791 ± 0.0013
Sessions 5-8 0.9990 ± 0.0003 0.9855 ± 0.0010 0.9820 ± 0.0011
Sessions 1-8 0.9988 ± 0.0001 0.9816 ± 0.0006 0.9803 ± 0.0007

LG 4000 vs TD100
Sessions 1-4 0.9985 ± 0.0004 0.9805 ± 0.0013 0.9768 ± 0.0021
Sessions 5-8 0.9978 ± 0.0004 0.9841 ± 0.0010 0.9665 ± 0.0014
Sessions 1-8 0.9979 ± 0.0002 0.9826 ± 0.0005 0.9699 ± 0.0009

been significant. M2 appeared to have the most consistent

ranking across session groups. For all sessions, ranks 1 through

3 remain consistent. Lastly, M3 shows the least amount of

consistency between session rankings. Although IrisGuard vs

IrisGuard appears in the first rank for all session groups, no

other clear patterns are present.

Based on these results and rankings, it is difficult to es-

tablish a clear sensor ranking. Considering the rankings of

all three matchers, it appears the IrisGuard would be the best

sensor of the three, because the IrisGuard vs IrisGuard same

sensor results were consistently among the best performing

experiments, and cross-sensor results involving the IrisGuard

often ranked better than the single-sensor results using the LG

4000 or TD100. There is significant disagreement between the

matchers and session groups regarding whether the TD100 or

the LG 4000 has better overall performance. The LG 4000

has the best performance using M2, but is sometimes out-

performed by the TD100 using M1 and M3. From this, we con-

clude that while the IrisGuard appears to have the most robust

performance across algorithms, the relative performances of

the TD100 and LG 4000 using M1 or M3 are more affected by

acquisition environment and data quality than sensor selection.

V. CONCLUSIONS

This work presents experiments which compare three com-

mercially available iris sensors, the IrisGuard AD100, the LG

IrisAccess 4000, and the LG TD100. The results are used to

investigate the robustness of each sensor to changes in envi-

ronment as well as difference in dilation ratio between image

pairs. We also analyze the relationship between single and

cross-sensor performance for these sensors, and observe the

role of the matching algorithm on relative sensor performance.

Summarizing, we observed the following:

• Seemingly trivial changes in acquisition environment can

have major impacts on performance. This was observed

for all three sensors and all three algorithms, though the

LG 4000 vs LG 4000 experiment using M2 appeared to

be the most robust to changes in environment.

• Lower DDRs yield higher performance in both single-

sensor and cross-sensor contexts.

• Some combinations of algorithms and sensors seem to

be more robust to larger DDRs and particular changes in

environment. From this we conclude that the relationship

between matching algorithm, sensors, and acquisition en-

vironment should be considered when designing a system

for uncontrolled acquisition environments.

• Relative cross-sensor performance was generally pre-

dicted by relative single-sensor performance when using

M1 and M2, with rare exceptions. Similarly, cross-sensor

performance was often between the performance of the

corresponding single-sensor experiments when using M1

and M2, again with rare exceptions. In no instances

did our cross-sensor experiments out-perform the corre-

sponding single-sensor experiments. In general, results

from M3 were inconclusive regarding the relationship be-

tween single-sensor and cross-sensor performance. From

a practical perspective, this means that given an existing

biometric system, introducing a higher quality sensor to

be used for cross-sensor comparisons will generally result

in performance that falls between the single-sensor per-

formance of the new sensor and existing sensor, although

in rare cases it may degrade performance rather than

improve it.

• The IrisGuard appears to have the most robust perfor-

mance across all of the algorithms and session groups

tested in this work. When choosing between the LG 4000

and TD100 using M1 and M3, the relative performance

of the system is more heavily affected by environmental

conditions and data quality than by the choice of sensor.

In future work, we hope to further explore how specific

changes in acquisition environment, such as ambient illumi-

nation levels, affect sensor performance. Additionally, we may

replicate our analysis of the impact of dilation ratio difference

to explore other image factors such as iris diameter, image

focus, and occlusion.
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TABLE IX
SENSOR RANKINGS BASED ON TRUE ACCEPT RATE AT A FALSE ACCEPT RATE OF 0.001

Ranking M1 M2 M3

1
Sessions 1-4 IrisGuard vs IrisGuard LG 4000 vs LG 4000 IrisGuard vs IrisGuard
Sessions 5-8 IrisGuard vs IrisGuard LG 4000 vs LG 4000 IrisGuard vs IrisGuard
Sessions 1-8 IrisGuard vs IrisGuard LG 4000 vs LG 4000 IrisGuard vs IrisGuard

2
Sessions 1-4 IrisGuard vs LG 4000 IrisGuard vs IrisGuard LG 4000 vs LG 4000
Sessions 5-8 IrisGuard vs TD100 IrisGuard vs IrisGuard IrisGuard vs TD100
Sessions 1-8 IrisGuard vs TD100 IrisGuard vs IrisGuard IrisGuard vs TD100

3
Sessions 1-4 LG 4000 vs LG 4000 IrisGuard vs LG 4000 IrisGuard vs TD100
Sessions 5-8 TD100 vs TD100 IrisGuard vs LG 4000 TD100 vs TD100
Sessions 1-8 IrisGuard vs LG 4000 IrisGuard vs LG 4000 IrisGuard vs LG 4000

4
Sessions 1-4 IrisGuard vs TD100 LG 4000 vs TD100 IrisGuard vs LG 4000
Sessions 5-8 IrisGuard vs LG 4000 IrisGuard vs TD100 IrisGuard vs LG 4000
Sessions 1-8 TD100 vs TD100 LG 4000 vs TD100 LG 4000 vs LG 4000

5
Sessions 1-4 LG 4000 vs TD100 IrisGuard vs TD100 LG 4000 vs TD100
Sessions 5-8 LG 4000 vs TD100 LG 4000 vs TD100 LG 4000 vs LG 4000
Sessions 1-8 LG 4000 vs LG 4000 IrisGuard vs TD100 TD100 vs TD100

6
Sessions 1-4 TD100 vs TD100 TD100 vs TD100 TD100 vs TD100
Sessions 5-8 LG 4000 vs LG 4000 TD100 vs TD100 LG 4000 vs TD100
Sessions 1-8 LG 4000 vs TD100 TD100 vs TD100 LG 4000 vs TD100

REFERENCES

[1] A. Ross and A. Jain, “Biometric sensor interoperability: A case study
in fingerprints,” in Proceedings of the International ECCV Workshop

on Biometric Authentication (BioAW), vol. 3087. Springer Publishers,
May 2004, pp. 134–145.

[2] S. K. Modi, “Analysis of fingerprint sensor interoperability on system
performance,” PhD Thesis. Purdue University, August 2008.

[3] F. Alonso-Fernandez, J. Fierrex-Aguilar, and J. Ortega-Garcia, “Sensor
interoperability and fusion in signature verification: A case study using
tablet pc,” in Lecture Notes in Computer Science, vol. 3781, 2005, pp.
180–187.

[4] A. Martin, M. Przybocki, G. Doddington, and D. Reynolds, “The
nist speaker recognition evaluation - overview, methodology, systems,
results, perspectives,” pp. 225–254, 2000.

[5] Y. E. Du, “Review of iris recognition: Cameras, systems, and their
applications,” in Sensor Review. Emerald Group Publishing Limited,
2006, vol. 26, no. 1, pp. 66–69.

[6] M. Theofanos, B. Stanton, R. Micheals, and S. Orandi, “Biometric sys-
tematic uncertainty and the user,” in First IEEE International Conference

on Biometrics: Theory, Applications, and Systems, September 2007, pp.
1–6.

[7] F. Alonso-Ferdandez, J. Fierrez, and J. Ortega-Garcia, “Quality measures
in biometric systems,” in IEEE Transactions on Security and Privacy,
vol. 99, December 2011.

[8] E. Kukula, M. Sutton, and S. Elliott, “The human-biometric-sensor
interaction evaluation method: Biometric performance and usability
measurements,” in IEEE Transactions on Instrumentation and Measure-

ment, vol. 59, March 2010, pp. 784–791.

[9] K. W. Bowyer, S. E. Baker, A. Hentz, K. Hollingsworth, T. Peters,
and P. J. Flynn, “Factors that degrade the match distribution in iris
biometrics,” in Identity in the Information Society. Springer, 2010,
vol. 2, no. 3, pp. 327–343.

[10] International Biometrics Group, “Independent testing of iris recog-
nition technology,” [online] http://www.biometricscatalog.org/itirt/itirt-
FinalReport.pdf, May 2005.

[11] Authenti-Corp, “Final report: iris recognition study 2006 (IRIS06),” [on-
line] http://www.nist.gov/customcf/get pdf.cfm?pub id=903606, 2006.

[12] E. Newton and P. Phillips, “Meta-analysis of third-party evaluations of
iris recognition,” in IEEE Transactions on Systems, Man and Cybernet-

ics, Part A: Systems and Humans, vol. 39, January 2009, pp. 4–11.

[13] P. J. Philips, W. T. Scruggs, A. J. O’Toole, P. J. Flynn, K. W. Bowyer,
C. L. Schott, and M. Sharpe, “FRVT 2006 and ICE 2006 large-scale
experimental results,” in IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 32, no. 5, May 2010, pp. 831–846.

[14] K. Hollingsworth, K. W. Bowyer, and P. J. Flynn, “Pupil dilaton
degrades iris biometric performance,” in Computer Vision and Image

Understanding, vol. 113. Elsevier, 2009, pp. 150–157.

[15] S. E. Baker, K. W. Bowyer, and P. J. Flynn, “Empirical evidence for
correct iris match score degradation with increased time-lapse between
gallery and probe matches,” in International Conference on Biometrics,
June 2009, pp. 1170–1179.

[16] S. E. Baker, K. W. Bowyer, P. J. Flynn, and P. J. Phillips, “Degradation
of iris recognition performance due to non-cosmetic prescription con-
tact lenses,” in Computer Vision and Image Understanding, vol. 114,
September 2010, pp. 1030–1044.

[17] P. Grother, E. Tabassi, G. W. Quinn, and W. Salamon, “IREX 1: Per-
formance of Iris Recognition Algorithms on Standard Images,” [online]
http://www.nist.gov/customcf/get pdf.cfm?pub id=903606, 2009.

[18] K. Hollingsworth, K. W. Bowyer, and P. Flynn, “The importance of small
pupils: a study of how pupil dilation affects iris biometrics,” in IEEE

Second International Conference on Biometrics: Theory, Applications,

and Systems, September 2008, pp. 1–6.
[19] E. Ortiz and K. Bowyer, “Dilation aware multi-image enrollment for iris

biometrics,” in International Joint Conference on Biometrics, October
2011.

[20] R. Connaughton, A. Sgroi, K. W. Bowyer, and P. Flynn, “A cross sensor
evaluation of three commercial iris cameras for iris biometrics,” in IEEE

Conference on Computer Vision and Pattern Recognitions Workshop on

Biometrics, June 2011, pp. 97–140.
[21] C. Rathgeb, A. Uhl, and P. Wild, “Incremental iris recognition: A single-

algorithm serial fusion strategy to optimize time complexity,” in IEEE

Fourth International Conference on Biometrics: Theory, Applications,

and Systems, October 2010, pp. 1–6.
[22] P. Johnson, P. Lopez-Meer, N. Sazonova, S. Schuckers, and F. Hua,

“Quality in face and iris research ensemble (q-fire),” in IEEE Fourth

International Conference on Biometrics: Theory, Applications, and Sys-

tems, October 2010, pp. 1–6.
[23] “IrisGuard Inc’s IG-AD100 Dual-Eye Iris Recogni-

tion Camera Accomplishes Sweeping Results,” [online]
http://www.irisguard.com/uploads/IBG/ IG-AD100 Press Release.pdf,
October 2009.

[24] IrisGuard, “IG-AD100 : Iris Camera System,” [online]
http://www.irisguard.com/uploads/AD100ProductSheet.pdf, 2008.

[25] G. Davies, “Lamp Standard Classification of an IrisGuard AD100 LED
Device for IrisGuard,” through Lucid Optical Services Ltd., August
2009.

[26] LG Electronics U.S.A., Inc , Iris Technology Division, “IrisAc-
cess 4000 : next generation iris recognition system,” [online]
http://www.irisid.com/download/brochure/IrisID IrisAccess4000.pdf.

[27] Korea Testing Laboratory, “IEC 60825-1 : Safety of Laser Products,”
Safety Report, September 2006.

[28] Iris ID Systems, Inc, “iCam TD100 : Iris Recognition and Face Camera,”
[online] http://www.irisid.com/download/brochure/IrisID TD100.pdf,
2009.

[29] J. C. Wu, A. Martin, and R. N. Kacker, “Measures, uncertainties, and
significance test in operational roc analysis,” in Journal of Research

of the National Institute of Standards and Technology, January 2011,
vol. 15, pp. 517–537.


