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Abstract

As iris biometrics increasingly becomes a large-scale

application, the issue of interoperability between iris sen-

sors becomes an important topic of research. This work

presents experiments which compare three commercially

available iris sensors and investigates the impact of cross-

sensor matching on system performance. The sensors are

evaluated using three different iris matching algorithms,

and conclusions are drawn regarding the interaction be-

tween the sensors and the matching algorithm in a cross-

sensor scenario.

1. Introduction

As the field of biometrics grows and becomes a part of

daily life, the technology used to capture biometric data also

advances. Many more companies are producing sensors for

capturing iris data, and the pre-existing companies continue

to experiment and improve existing sensors. This poses the

question of whether these systems are interoperable. Sev-

eral studies have investigated the interoperability of both

face and fingerprint sensors [10],[8]. Additionally, some re-

searchers have reported on sensor safety, illumination, and

ease-of-use for iris recognition systems [4],[9]. Neverthe-

less, few studies have been conducted to investigate the in-

teroperability of iris sensors from varying manufacturers us-

ing multiple available matching algorithms.

This work compares three commercially available iris

sensors, observes the effects of cross-sensor comparisons,

and investigates the impact of the recognition algorithm on

single and cross-sensor performance. Each of the three sen-

sors examined in this work is used for iris enrollment and

recognition in the field today. Further, three different al-

gorithms are used to evaluate the recognition rates of the

single and cross-sensor comparisons. The use of multiple

algorithms provides an unbiased experiment to compare the

sensors, as well as offers some insight into the effect the

algorithm has on cross-sensor performance.

The remainder of this paper is organized as follows. Sec-

tion 2 discusses previous work done regarding the study of

interoperability of iris sensors. Section 3 describes the ex-

perimental setup and the dataset used to analyze the three

iris sensors. Results produced by the three matching algo-

rithms are shown and discussed in Section 4, and Section 5

concludes with general observations.

2. Related Work

Because iris biometrics is increasingly becoming a large-

scale application in which data is kept and used for long pe-

riods of time, the interoperability between iris sensors has

become a recent topic of interest. Bowyer et al. investigated

cross-sensor and cross-session comparisons using two iris

sensors [3]. The authors found that the older of the two

systems provided a less desirable match score distribution,

which led to an even less desirable cross-sensor match score

distribution. They concluded that if the newer sensor were

used to collect enrollment data and the older sensor used to

collect probe data, the system would achieve higher recog-

nition rates than if the older sensor were used for enrollment

and the newer sensor were used to acquire probe data.

In 2005, IBG evaluated the performance of four of the

currently available and most widely used iris acquisition

and recognition systems [7]. Through four criteria - false

accept and reject rate, failure to enroll and acquire, acquisi-

tion time and subject usability, and performance over time-

the authors evaluated each system in order to report which

system the U.S. Department of Homeland Security should

employ. The investigation showed that the sensor with the

lowest failure to enroll rate had less robust matching over

time than the sensor with a higher failure to enroll rate.

Overall, the less robust option was recommended due to

better performance in other categories of evaluation.

Many factors are known to affect the accuracy of most
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iris biometrics systems. These factors include, but are not

limited to, pupil dilation [6], time lapse between enrollment

and recognition [1], and contact lenses [2].Some sensors

may be more or less sensitive to these factors than others,

according to the optics, illumination technique, hardware,

and software of each sensor. In the IBG evaluation and

other reports such as that performed by Du, the illumina-

tion schemes, sensor optics, and usability were evaluated

[4].

Similarly, the matching algorithm used to perform iris

recognition also plays a large role in determining the per-

formance of the system. In 2009 NIST released the IREX

report comparing several algorithms using three iris datasets

[5]. The IREX evaluation was concerned mostly with algo-

rithm performance regarding timing estimates and expense

of computations. However, the authors did report that the

choice in the iris recognition algorithm is more influential

on the outcome given standardized iris images than in other

biometrics, such as fingerprint. Although many algorithms

take a Daugman-like approach, they provide different seg-

mentation and preprocessing steps, which affect the out-

come of the comparisons.

3. Methods

In this work, three commercially available iris sensors

(S1, S2, and S3) are compared in a cross-sensor and cross-

session context to evaluate both the performance of each

individual sensor and the interoperability between the sen-

sors. Each sensor was used to collect left and right iris

images for the same set of subjects over a span of several

weeks under a human subjects protocol approved by the

Notre Dame Human Subjects Institutional Review Board.

Each sensor was mounted on a tripod and adjusted to each

subject’s height, and the tripods were placed in a row with

equal spacing such that all three sensors were equidistant

from the ambient visible light sources in the acquisition

studio. The controlled environment was designed to pro-

vide similar acquisition conditions for each sensor. Sub-

jects approached sensor S1, S2, and S3 in order with little

time between each acquisition. Images were acquired using

the default settings for each sensor, and each sensor had its

own illumination technique and internal image quality con-

trol. Additionally, in all acquisition sessions, multiple im-

ages were acquired for each subject using each sensor, and

the amount of time between successive image acquisitions

varied from near-instantaneous to several seconds depend-

ing on the sensor. All three sensors produced images of the

same size, 640 pixels by 480 pixels.

The final dataset was collected in four acquisition ses-

sions, which spanned a total of 12 weeks. In total, 23,444

iris images were collected, spanning 510 unique subjects

(1,020 unique irises). Table 1 shows a detailed breakdown

of the number of iris samples collected and subjects in-

volved in each of the four acquisitions sessions. Examples

of images of the same iris acquired by sensors S1, S2, and

S3, are shown in Figure 1.

Three iris matching algorithms (A1, A2, and A3) were

used to compare irises acquired from different acquisition

sessions. One of the algorithms is an in-house iris matcher,

while the remaining two are commercially available match-

ers. None of the iris matchers are affiliated with the manu-

facturers of the sensors. The algorithms were used to com-

pare S1, S2, and S3 in both single-sensor and cross-sensor

scenarios.

4. Results

In a preprocessing stage, each of the three matching al-

gorithms was used to extract an iris template from each of

the original images. To create these templates, the irises

were segmented and features extracted using techniques

specific to each algorithm. In some cases, the algorithms

were unable to produce templates for particular images. In

total, A1 failed to produce templates for 4 images, A2 failed

for 17 images, and A3 failed for 84 images. More specifi-

cally, A1 failed for 1 image from S1, 1 image from S2, and

2 images from S3. A2 failed for 0 images from S1, 6 im-

ages from S2, and 11 images from S3. Finally, A3 failed

for 0 images from S1, 66 images from S2, and 18 images

from S3. Thus, images from sensor S3 produced the most

template failures for algorithms A1 and A2, while sensor

S2 produced the most failures for algorithm A3. However,

it should be noted that successful template generation does

not guarantee correct segmentation.

Table 2 shows the average pupil and iris radius, and the

average dilation ratio for each sensor as detected by A2 and

A3. This information could not be determined using A1.

The dilation ratio is calculated using the equation

Dilation =
PupilRadius

IrisRadius
(1)

and in general, a smaller dilation ratio is considered to be

better for most traditional iris biometrics systems. In sum-

mary, sensor S3 consistently had the smallest pupil and iris

radius, while the dilation ratio for S3 was between the ratios

for S1 and S2. Between S1 and S2, S1 had both the larger

iris radius and the smaller dilation ratio. Additionally, sen-

sor S1 produced the most variation in iris size across the

entire dataset.

Algorithms A1, A2, and A3 were each used to compare

irises from different acquisition sessions. The matching re-

sults presented in this section divide the iris comparisons

based on the sensors used to acquired the images. Specif-

ically, there were three single-sensor experiments (S1vS1,

S2vS2, and S3vS3), and three cross-sensor experiments

(S1vS2, S1vS3, and S2vS3). Experiment S1vS1, for ex-

ample, compares all pairs of images collected using sen-
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Table 1. DETAILED ACQUISITION SUMMARY

Session 1 Session 2 Session 3 Session 4 Total

S1
2080 Samples 1671 Samples 2345 Samples 2191 Samples 8287 Samples

265 Subjects 212 Subjects 302 Subjects 278 Subjects 491 Subjects

S2
1606 Samples 1584 Samples 2457 Samples 2651 Samples 8298 Samples

269 Subjects 266 Subjects 302 Subjects 319 Subjects 506 Subjects

S3
1579 Samples 1568 Samples 1799 Samples 1913 Samples 6859 Samples

269 Subjects 267 Subjects 301 Subjects 320 Subjects 509 Subjects

Figure 1. Images of the same iris taken by S1 (Left), S2 (Middle), and S3 (Right)

sor S1, omitting image pairs that originated from the same

session. Similarly, experiment S1vS2 compares all images

collected using sensor S1 to all images collected using sen-

sor S2, omitting image pairs acquired during the same ses-

sion. Each experiment was repeated using each of the three

matching algorithms.

The number of match and non-match comparisons used

in each experiment varied depending on both the sensor

and matching algorithm. In some cases, the matching al-

gorithms filtered out comparisons which could not generate

match scores above a particular confidence threshold; these

comparisons are omitted from the experiment results pre-

sented in this section. The total number of match and non-

match comparisons used in each experiment are shown in

Table 3.

The match and non-match score distributions for all ex-

periments using algorithm A1 are shown in Figure 2. The

output of algorithm A1 is a similarity score for each iris

comparison, where a higher score indicates a better match.

In Figure 2, the non-match score distributions for each ex-

periment are nearly identical. From this graph, it can be

seen that the match score distributions for single-sensor ex-

periments were generally further to the right than the cross-

sensor match score distributions. Figure 3 shows the ROC

curves for all experiments using A1. Comparing the ROC

curves in Figure 3 at a FAR=0.01, S1vS1 performed the best

and S3vS3 performed the worst of the single-sensor exper-

iments, and the cross-sensor experiments achieved TAR’s

that fall between those of the corresponding single-sensor

experiments.

Figure 4 shows the match and non-match score distribu-

tions for all experiments using algorithm A2. The output of

algorithm A2 is a distance score for each iris comparison,

where a lower score indicates a better match. While all of

match score distributions are near zero, the match distribu-

tions from the cross-sensor experiments consistently extend

further to the right than the single-sensor experiments. Fig-

ure 5 shows the ROC curves for the experiments using al-

gorithm A2. Comparing these ROC curves at FAR=0.01,

S2vS2 performed the best and S3vS3 performed the worst

of the single-sensor experiments. Also, unlike the results

from A1, for A2 the ROC curves of the cross-sensor exper-

iments do not strictly fall between the ROC curves of the

corresponding same-sensor experiments. The performance

of S1vS2 was consistently worse than the performance of

either S1vS1 or S2vS2.

Finally, the match and non-match score distributions for

the experiments using A3 are shown in Figure 6. The output

of A3, like A2, is a distance score, so a lower score indicates

a better match. The match score distributions for the single-

sensor experiments are generally shifted to the left of the

cross-sensor experiments in Figure 6. Figure 7 shows the

ROC curves for the experiments using algorithm A3. Com-

paring the ROC’s at FAR=0.01, S1vS1 performed the best

and S3vS3 performed the worst of the single-sensor com-

parisons. Interestingly, S1vS3 actually achieved the second

best performance of all of the experiments using A3, and

S2vS3 performed the worst.

Evaluating these results in the context of a sensor com-

parison, it is clear that images from sensor S3 performed

the worst of the three sensors for all three algorithms in

a single-sensor scenario. Out of the three single-sensor

experiments considered, sensor S3 had the lowest perfor-

mance at FAR=0.01 for all three algorithms. The relatively

lower performance of sensor S3 may be explained by Ta-

ble 2, which shows that the average iris radius was generally
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Table 2. AVERAGE PUPIL RADIUS, IRIS RADIUS, AND DILATION RATIO

A2 A3

S1

Pupil = 44.6 pixels (σ = 6.9) Pupil = 45.8 pixels (σ = 6.8)

Iris = 130.8 pixels (σ = 10.3) Iris = 134.0 pixels((σ = 11.5)

Dilation = 0.342 (σ = 0.051) Dilation = 0.343 (σ = 0.052)

S2

Pupil = 47.6 pixels (σ = 8.2) Pupil = 48.6 pixels (σ = 8.5)

Iris = 124.3 pixels (σ = 8.6) Iris = 125.1 pixels (σ = 8.7)

Dilation = 0.383 (σ = 0.062) Dilation = 0.389 (σ = 0.065)

S3

Pupil = 43.2 pixels (σ = 7.8) Pupil = 44.7 pixels (σ = 7.6)

Iris = 115.8 pixels (σ = 7.5) Iris = 118.2 pixels (σ = 8.6)

Dilation = 0.373 (σ = 0.066) Dilation = 0.379 (σ = 0.064)

Table 3. NUMBER OF MATCH AND NON-MATCH COMPARISONS IN EACH EXPERIMENT
A1 A2 A3

S1vS1
Match = 28,207 Match = 28,207 Match = 28,188

Non-Match = 12,783,542 Non-Match = 12,786,533 Non-Match = 12,772,638

S2vS2
Match = 27,485 Match = 27,453 Match = 26,835

Non-Match = 12,645,155 Non-Match = 12,629,379 Non-Match = 12,330,790

S3vS3
Match = 18,921 Match = 18,903 Match = 18,836

Non-Match = 8,775,488 Non-Match = 8,752,069 Non-Match = 8,732,954

S1vS2
Match = 55,534 Match = 55,494 Match = 54,817

Non-Match = 25,542,660 Non-Match = 25,530,015 Non-Match = 25,199,025

S1vS3
Match = 46,051 Match = 46,031 Match = 45,927

Non-Match = 21,208,102 Non-Match = 21,181,421 Non-Match = 21,123,435

S2vS3
Match = 45,772 Match = 45,721 Match = 45,071

Non-Match = 21,147,811 Non-Match = 21,105,682 Non-Match = 20,848,573

smaller than the irises acquired using S1 and S2. Interest-

ingly, S1vS3 had the best of the cross-sensor performances

using algorithm A3, achieving better performance than two

of the single-sensor experiments as well. In both the single-

sensor and cross-sensor scenarios, Sensor S1 achieved the

best relative performance using algorithm A1, and sensor

S2 achieved the best relative performance using algorithm

A2.

Evaluating the results to summarize the impact of using

cross-sensor comparisons, several conclusions can be made.

From the previously presented score distributions and ROC

curves, it is clear that the relative performance of the sensors

is sensitive to the algorithm choice. In other words, when

designing an iris biometrics system, sensor selection should

not be made independent of the algorithm choice; instead,

the two factors should be evaluated in combination. Ad-

ditionally, the performance of cross-sensor comparisons is

also dependent on both the sensors and the matching algo-

rithm. In the experiments using A1, for example, the TAR

of the cross-sensor experiments consistently fell between

the TAR of the corresponding single-sensor experiments (at

FAR=0.01). This might suggest that given a system which

currently uses an older sensor, the introduction of a newer

sensor that achieves higher performance may be able to

increase overall system performance even if cross-sensor

comparisons are used to utilize legacy data. However, the

experiments using algorithm A2 show that this is not always

the case. Using A2, S2vS2 consistently performed better

than S1vS1, but cross-sensor comparisons between S1 and

S2 actually degraded performance below the performance

of either single-sensor experiment.

Further, the relative performance of single-sensor com-

parisons is not necessarily a reliable predictor of the rela-

tive performance of cross-sensor comparisons. In the ex-

periments presented in this work, we find that the perfor-

mance of the same-sensor experiments is a reliable predic-

tor of cross-sensor performance for algorithms A1 and A2,

but not for algorithm A3. For example, using algorithm A1,

the relative order of same-sensor performance (from best to

worst at FAR=0.01) was S1vS1, S2vS2, and S3vS3. Us-

ing the same algorithm, S1vS2 was the best of the cross-

sensor experiments, followed by S1vS3, and finally S2vS3.

In algorithm A2, the relative order of same-sensor perfor-

mance was different (S2vS2, S1vS1, and then S3vS3); how-

ever, this relative order was preserved in the cross-sensor

experiments, where the relative order was S1vS2, S2vS3,

and S1vS3. Unlike algorithms A1 and A2, A3 did not pre-

serve this relative ordering. For A3, the same-sensor per-
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Figure 2. Match and non-match score distributions for all experiments using algorithm A1. A higher score indicates a better match. The

non-match score distributions are nearly identical.

Figure 3. ROC curves for all experiments using algorithm A1.
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Figure 4. Match and non-match score distributions for all experiments using algorithm A2. A lower score indicates a better match.

Figure 5. ROC curves for all experiments using algorithm A2.
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Figure 6. Match and non-match score distributions for all experiments using algorithm A3. A lower score indicates a better match.

Figure 7. ROC curves for all experiments using algorithm A3.
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formances from best to worst at FAR=0.01 were S1vS1,

S2vS2, and S3vS3. The cross-sensor rankings, however,

were S1vS3, S1vS2, and S2vS3. This may suggest that al-

gorithm A3 is more sensitive to differences in particular ac-

quisition factors (e.g. pupil dilation/size, illumination tech-

nique, specular highlights), and that these factors experi-

ence the greatest variability in a cross-sensor scenario.

5. Conclusion

In this work, we present a study designed to compare

three commercially available iris cameras for iris biomet-

rics. In addition to comparing the isolated performance of

each of the three sensors (S1, S2, and S3), we analyze the

performance of cross-sensor comparisons for the three sen-

sors as well. Data was collected for the same subjects using

each of the three sensors, and the iris images are compared

using three different matching algorithms (A1, A2, and A3).

Summarizing the results of the sensor comparisons we

found that sensor S1 performed the best under algorithms

A1 and A3 at FAR=0.01, while Sensor S2 performed best

under algorithm A2. Sensor S3 consistently performed the

worst of the three sensors in the single-sensor experiments,

although the cross-sensor experiment between S1 and S3

outperformed all but one of the single-sensor experiments

and all other cross-sensor experiments using algorithm A2.

Across all experiments using all sensors and matchers, the

best performance at FAR=0.01 was achieved by algorithm

A1, for which sensor S1 was the strongest of the three sen-

sors.

We also draw the following conclusions from the cross-

sensor experiment results:

• When selecting a sensor and algorithm for a biomet-

ric system, the two components should be evaluated in

combination, rather than independently.

• The relative performance of cross-sensor experiments

compared to the single-sensor experiments using the

same sensors is dependent on both the sensors and

the matching algorithm. In some cases, introducing

a higher quality sensor to be used for cross-sensor

comparisons may degrade performance rather than im-

prove it.

• The relative performance of single-sensor comparisons

is not necessarily a reliable predictor of the relative

performance of cross-sensor comparisons using the

same sensors. Thus, evaluating a new sensor on im-

ages it acquires may not predict cross-sensor compati-

bility to an older sensor.

In future work, we plan to investigate whether particu-

lar acquisition and sensor characteristics (e.g. illumination

technique, pupil dilation, specular highlights) have greater

impacts on cross-sensor comparison performance than oth-

ers.
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