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Abstract

Real-world biometric applications often operate in the
context of an identity transaction that allows up to three
attempts. That is, if a biometric sample is acquired and
if it does not result in a match, the user is allowed to ac-
quire a second sample, and if it again does not result in a
match, the user is allowed to acquire a third sample. If the
third sample does not result in a match, then the transac-
tion is ended with no match. We report results of an exper-
iment to determine whether or not successive attempts can
be considered as independent samples from the same dis-
tribution, and whether and how the quality of a biometric
sample changes in successive attempts. To our knowledge,
this is the first published research to investigate the statis-
tics of multi-attempt biometric transactions. We find that the
common assumption that the attempt outcomes come from
independent and identically distributed random variables in
multi-attempt biometric transactions is incorrect.

1. Introduction
Biometric systems typically allow for multiple attempts

in a single authentication transaction to minimize the num-
ber of false rejections. That is, if a subject is not matched
on the first sample, he or she is asked to present the bio-
metric characteristics again. After a second non-match, a
third presentation is allowed, but a third non-match result
causes a rejected transaction in most biometric systems.
This up-to-three-tries methodology is very popular in op-
erational authentication scenarios. A good example is the
CANPASS system maintained by the Canadian Border Ser-
vices Agency (CBSA) and providing an entry into Canada
for frequent travelers1. The dataset resulting from this op-
erational application has been used in, e.g., the NIST IREX
VI report on the topic of iris template aging [1]. Another ex-

1http://www.cbsa-asfc.gc.ca/prog/canpass/canpassair-eng.html

ample is the AADHAAR project, in which the subjects are
allowed to make five attempts in a single fingerprint recog-
nition transaction2.

One of the important questions is: what is the acceptance
probability when one, two, three, ..., N attempts are permit-
ted in a single transaction? It is common to assume ergod-
icity of biometric comparisons when calculating the trans-
actional false rejection rate. Assuming that the probability
of being accepted in a single attempt is – say – 90%, a com-
mon answer would be 90% + (100% - 90%) · 90% = 99%
for up-to-two-attempt system, 90% + (100% - 90%) · 90%
+ (100% - 90%)2 · 90% = 99.9% for up-to-three-attempt
system, and so forth. When making these calculations, one
assumes that subjects’ behavior is uniform across the popu-
lations and attempts, hence the resulting comparison scores
achieved in the first, second and third attempts are i.i.d. ran-
dom variables, i.e., are statistically independent and come
from the same distribution. This assumption has unknown
source. We guess that this may have come from password-
based authentication, in which typing errors might be more
like a draw from the same distribution in each try. This
work shows that the Bayes’ equation cannot be used to es-
timate the transaction-level rejection rate in this case as it is
over-simplistic. In particular, the research results presented
in this paper are organized around answering the following
three questions related to multi-attempt biometric systems.

Question 1: Is the distribution of comparison scores ob-
tained in the second attempt (i.e., from those subjects who
were rejected in the first attempt) different from a general
distribution of all comparison scores obtained in the first at-
tempt? If so, does this difference still exist when second-
and third-attempt comparison scores are analyzed?

Question 2: Is a subject able to give a better compari-
son score on the next attempt after being rejected? In other
words, can we assume that the subject improves his or her
iris presentation on each successive attempt allowed after a

2https://uidai.gov.in/UID PDF/
Committees/Biometrics Standards Committee report.pdf
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previous attempt resulted in a non-match?

Question 3: If there are differences in comparison score
distributions among attempts, what causes them? In partic-
ular, which dimensions of iris image quality can and can’t a
subject improve with conscious effort?

To answer the above questions, an experiment was con-
ducted with 120 volunteers enrolled in an iris recognition
system and returning after approximately two months to
perform an up-to-three-attempt verification transaction. Re-
sults suggest that users presenting their irides in the second
attempt perform significantly worse than a population of
subjects presenting their eyes for the first attempt (re: Ques-
tion 1), despite the fact that those persons rejected on their
first attempt give better comparison scores in their second
attempt (re: Question 2). The latter means that this small
improvement does not compensate for some other (yet to
be identified) reasons making it harder for these subjects to
interact with a biometric system. We show that usable iris
area and motion blur have some relation with the improve-
ment of subject’s performance, yet the changes in quality
metrics are not always statistically significant (re: Question
3). This is the only paper that we are aware of to analyze
how the distribution of authentic scores changes on the first,
second and third attempts in an iris recognition system. We
believe that the results presented in this work may apply to
other biometrics modalities as well.

2. Related work

One of a few papers addressing differences in compar-
ison score distributions calculated for different attempts is
an evaluation of the INSPASS hand geometry system [5].
The authors “were rather surprised by the similarity of the
three distributions, although their movement to the right in-
dicates an increasing false non-match rate with subse-
quent tries after failures.” This statement perfectly har-
monizes with one of our findings related to a higher prob-
ability of being rejected for those who did not succeed
on previous attempts when compared to a general popula-
tion of users having their first attempt. This shift in gen-
uine score distributions can be observed in Fig. 6 of [5].
Kukula and Elliot [3] present deployment of the commercial
hand geometry system at the Purdue University’s Recre-
ational Sports Center, implementing a three-attempt deci-
sion rule. The authors report that “the 1-try false reject rate
was 2.26%, the 2-try rate was 1.18%, and the 3-try rate was
0.98%.” These estimates are much higher than theoretical
values calculated under the assumptions on statistical in-
dependency and identical distributions of the comparison
scores in each attempt, i.e., 1.18% > (2.26%)2 = 0.067%,
and 0.98% > (2.26%)3 = 0.002%. Similar theoretical
underestimation of the error rates is clear when studying

AADHAAR report3. Namely, “using the residents best fin-
ger single-attempt gives an accuracy of 85%”, and “using
multiple (up to 3) attempts of the same best finger im-
proves the accuracy to 91%.” However, if the compari-
son scores in the consecutive tries are i.i.d. random vari-
ables, then the accuracy in the three-attempt system should
be 99.66% = 85%+15% · 85%+15% · 15% · 85%, which
is higher than reported 91%.

All these papers and reports are silent on statistics of the
multi-attempt systems.

3. Database
3.1. Collection protocol

The acquisition protocol simulated a typical physical ac-
cess control scenario based on iris recognition and it was
organized in an office environment. The ambient condi-
tions were stable for all acquisitions. The IrisGuard AD100
two-eye camera was installed on a tripod and each partici-
pant could adjust its height to align camera position with his
or her eyes. The camera controlled basic properties of the
image (such as brightness and contrast) as well as the size
and location of the iris within the image. If an excessive
pupil dilation is detected, the visible light is automatically
turned on to get the pupil constricted. Two acquisition ses-
sions were organized and separated by approximately two
months. In the first session volunteers were asked to en-
roll to the system presenting their eyes once. In the second
session the same subjects presented themselves for a ver-
ification transaction which allowed up to three iris recog-
nition attempts prior to being definitely rejected. That is,
in each verification attempt two eyes were photographed
and the comparison scores were calculated independently
for the left and the right eye. If either the left iris or the right
iris comparison score indicated non-match, the attempt was
rejected and the subject was asked to present their irides
again. Acquisition was stopped when both the left and the
right iris images resulted in acceptable comparison scores
or after the third attempt. Subjects were not informed why
they had been rejected.

It is important to note that the left and right eyes were
processed independently as they would be collected in a
single-eye acquisition system. This means that if, for in-
stance, the left eye was rejected but the right eye was ac-
cepted in the first try, then only the results related to the left
eye were analyzed in the second try for this subject.

3.2. Iris matching methodology used in this work

To perform analyses related to both the iris matching
and iris image quality we use the OSIRIS (Open Source for
IRIS) software [4], which follows Daugman’s well-known

3https://authportal.uidai.gov.in/static/
role of biometric technology in aadhaar authentication.pdf
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concepts for the iris image normalization, Gabor-based fil-
tering and quantization of the filtering results to build a
fixed-length iris binary code, and comparison between iris
codes by calculating a fractional Hamming distance (HD).
HD ∈ 〈0; 1〉, where 0 denotes identical eyes, and 0.5 should
be expected on average for a match between two different
irides. OSIRIS returns also circular approximations of the
pupil and iris, as well as irregularly shaped approximations
of occlusions.

To collect samples acquired on the second and third at-
tempts, subjects must be rejected on prior attempts. An as-
piration to collect as large a dataset as possible suggests
to reject everyone on each attempt. This simple scenario,
however, would be easy to guess by volunteers who would
not be motivated to improve their presentations once be-
ing rejected. On the other hand, using a “real” operational-
scenario rejection rate for iris recognition, i.e. no more than
a few percent, would generate a tiny dataset. Hence, a 50%
rejection rate was targeted as a tradeoff between the oper-
ational reality and the anticipated dataset volume. To set
the acceptance threshold for the OSIRIS method we used
an internal, not-yet-published dataset of samples collected
in the same office environment and with the same camera
as in this work for 1000 distinct eyes. Each iris was repre-
sented by two non-same-session samples. This allowed to
calculate 1000 genuine and statistically independent com-
parisons. Analyzing an inverse cumulative distribution of
the resulting comparison scores at the 50% level ended up
with the acceptance threshold equal to 0.2547. That is, any
comparison score that is above this value resulted in the re-
jection of a given attempt.

3.3. Database statistics

173 subjects participated in the first, enrollment session,
and 120 subjects returned after approximately two months
to attend the second, verification session. Further statis-
tics and analysis in this paper are provided only for those
returning subjects, 67 of whom (56%) were female and
53 of whom (44%) were male, giving a good gender bal-
ance. Minimum subject age was 19 years, maximum was
60 years, and the median was 22 years.

50 left eyes and 39 right eyes (out of 120, i.e., 41.7%
and 32.5%, correspondingly) were rejected in the first veri-
fication attempt. Among those eyes rejected in the first try,
34 left and 31 right eyes (i.e., 68% and 79% of the left and
right eyes, respectively) were rejected again in the second
try. In the third attempt, still 32 out of 34 left eyes (94%)
and 24 out of 31 right eyes (77%) were rejected. It is thus
evident that the probability of rejecting a sample in the
next attempts after being rejected in the first try grows
significantly.

We have collected 240 enrollment images in the first ses-
sion (a single image for the left and right eyes of each sub-

Figure 1. Example of a good quality image (A). Images rejected in
visual inspection due to overestimation of occlusions (B), failure
in localizing the iris (C), underestimation of the occlusions (D),
and imprecise localization of the iris boundary (E).

ject) and 474 images in the second session (up to three im-
ages for each eye, depending on the matching decision). An
example good quality image with correct segmentation is
presented in Fig. 1A. All the acquired images were visually
inspected and those with bad localization of the iris bound-
aries (Fig. 1 C and E) or occlusions (Fig. 1 B and D) were
discarded from further processing (10 and 22 images were
removed from those collected in the first and second ses-
sion, respectively). Since the quality of the enrollment sam-
ples is crucial for the verification performance, one of the
aims of this visual inspection was to minimize the influence
of bad quality enrollment samples on the final conclusions.
However, one should be aware that discrepancies in sample
quality across the subjects may still be present. Finally, we
have 230 enrollment samples and corresponding 452 ver-
ification samples acquired for 230 unique eyes available
for our analysis.

4. Experimental results
4.1. Answer to question 1

To answer the first question the following sets of com-
parison scores were calculated:

a1-all: all comparison scores (fractional Hamming dis-
tances) obtained from all subjects on the first attempt,

a2-all: all comparison scores obtained from those sub-
jects who were rejected on the first attempt, and presented
their irides for the second time,

a3-all: all comparison scores obtained from those sub-
jects who were rejected twice, and presented their irides for
the third time.

Cumulative distributions of all the above sets of compar-
ison scores are shown in Fig. 2. One may see a clear shift
of the distributions towards worse values in consecutive at-
tempts. This means that the population of subjects rejected
in the first attempt and presenting their eyes for the sec-
ond time performs much worse than a general population of
all subjects in their first try. A similar effect, although to
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Figure 2. Cumulative distributions of comparison scores obtained
in all first attempts (black solid line), all second attempts (blue
dashed line) and all third attempts (red dotted line).

some lesser extent, can be observed when comparing those
rejected twice with the entire population having second at-
tempt.

We use a two-sample one-sided t-test at the significance
level α = 0.05 to judge the statistical significance of the
observed differences. The null hypothesis (H0) is that the
comparison scores obtained in different attempts come from
normal distributions with equal means (equality of vari-
ances is not assumed). The alternative hypothesis (H1) is
that the mean comparison score is worse for those present-
ing their irides again when compared to those having one
attempt less. The test rejected H0 in favor of H1 in both
cases, i.e., mean fractional HD in a2-all subset of scores is
greater than mean fractional HD in a1-all subset of scores
(p-value=10−9), and mean fractional HD in a3-all subset of
scores is greater than mean fractional HD in a2-all subset
of scores (p-value=0.016). Hence, the answer to the ques-
tion 1 is: the distribution of comparison scores obtained
in the second attempt is different from, and worse than,
a general distribution of all comparison scores obtained
in the first attempt. This is also true when all third-attempt
comparison scores are compared to all second-attempt com-
parison scores, suggesting that the probability of being ac-
cepted in the next attempt is significantly lower than in the
previous attempt.

4.2. Answer to question 2

To answer the second question, we compare the scores
of those rejected in the first attempt with their subsequent
second-attempt scores. Extending this research to the next
attempts, the rejected second-attempt scores are also com-
pared to the corresponding third-attempt scores. Thus, be-
sides a2-all and a3-all score subsets, we need the following
two additional subsets:

a1-rejected: subset of all comparison scores obtained on
the first try that were rejected,

a2-rejected: subset of all comparison scores obtained on
the second attempt that were rejected.
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Figure 3. Cumulative distributions of comparison scores in the
first rejected attempts (black solid line), all second attempts (blue
dashed line), second attempts that were rejected (black dotted-
dashed line) and all third attempts (red dotted line).

Cumulative distributions of the appropriate subsets of
comparison scores are shown in Fig. 3. To check whether
rejected subjects improve in the next attempt there is a need
to compare a1-rejected subset of scores with a2-all sub-
sets of scores for those being rejected in the first try, and
a2-rejected subset of scores with a3-all subset of scores
for those rejected twice. Difference in average values for
the former case (0.3019 vs. 0.2856, Fig. 3) suggests an im-
provement in the second try. However, further improvement
(in the third try) is marginal (0.3059 vs. 0.3057, Fig. 3).
Again, appropriate statistical tests were performed (a two-
sample one-sided t-test at the significance level α = 0.05).
The null hypothesis (H0) corresponds to no improvement
in the next try after being rejected. The alternative hypoth-
esis (H1) stands for the improvement (lower mean HD is
observed in the next try). We get statistically significant
improvement in the second attempt (p-value=0.0174). Not
surprisingly, the mean value of scores in the a3-all subset is
not statistically greater than mean value of scores in the a2-
rejected subset (p-value=0.51). Hence, the answer to the
question 2 is: a subject is able to give a better compar-
ison score on the second attempt after being rejected in
the first try. However, there is no further improvement ob-
served if the third try is allowed after being rejected twice.
A possible interpretation for these results is that the second
attempt just more strongly separates those who can give a
good-quality iris image and those who cannot, so that those
who fail the second time just can’t do any better. There may
be some non-random reason that subjects rejected twice
can’t give a good sample. But those who are accepted on
the second attempt just had some random thing go wrong on
the first attempt and they correct it on the second attempt.
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4.3. Answer to question 3

There are various metrics estimating the quality of iris
images that should explain the fluctuations in matching per-
formance observed in different attempts. In this work we
decided to use only those metrics that depend on subject’s
behavior, namely usable iris area (UIA) related to the eye-
lid coverage, and motion blur (MB) corresponding to the
stability of one’s head when acquiring the iris image. Eye
gaze, being the next possibility, was not considered since it
was controlled by the operator during the acquisition.

UIA is the ratio between the number of iris pixels marked
as non-occluded to the overall number of iris pixels, and
its calculation follows directly the ISO/IEC 29794-6 rec-
ommendation [2]. Circular approximations of the inner and
outer iris boundaries are used. UIA ∈ 〈0, 100〉, where 0 de-
notes totally occluded iris, and 100 corresponds to a clear
iris image.

Figure 4. Illustration of how the motion blur is estimated. Left:
Center part of the iris image with a motion blur. Middle: Esti-
mated point spread function (PSF). The boundary minimizing the
intraclass variance of the ’black’ and ’white’ pixels (in a binary
version of the PSF) is also shown. Right: Binary PSF.

Calculation of the MB is based on a principle that a
blurred iris image (Fig. 4, left) can be modeled as a convolu-
tion of a non-distorted image with a distortion kernel (point
spread function, PSF). The ellipsoidal shape of the PSF in-
dicates that the blurring has a directional character, e.g., the
object was moving when being photographed. Also, the
wider the PSF the more blurred the image. Both the im-
age and the PSF are unknown, so a blind deconvolution was
applied to find a hypothetical perfect image and a hypothet-
ical PSF (Fig. 4, middle). The PSF is transformed into a
binary image by minimizing the intraclass variance of the
resulting black and white pixels (Fig. 4, right). The MB
quality metric is calculated as a geometrical mean of two
components derived from a white shape visible in the bi-
nary image: 1) the relative area that expresses the amount
of blur (estimating also the image sharpness) and 2) a ratio
between its major and minor axes, which positively corre-
lates with the speed of the movement. In our experiments
MB ∈ 〈0; 1〉, where lower values are obtained for sharp im-
ages.

When finding the answer to question 1 (subsection 4.1)
we found that the probability of being rejected in the next
attempt is significantly higher than in the previous attempt.

Let’s analyze what happens with the UIA and MB quality
metrics in this case. Average values and cumulative distri-
butions of the usable iris area and motion blur are shown in
Figures 5 and 6, respectively. Surprisingly, those attempt-
ing for the second time open their eyes wider (higher value
of UIA) and stand more still (lower value of MB). It means
that those rejected in the first attempt try, in average, to im-
prove in the second attempt. However, this improvement is
not observed for UIA in the third attempt, while the motion
blur is further reduced in the third try. Statistical testing
(analogous to those performed in subsections 4.1 and 4.2)
suggests unfortunately that the observed differences in av-
erage quality metrics are not statistically significant. Thus,
we conclude that there is probably some other significant
source of difficulty in generating a good comparison scores
for some isolated group of people, even if a little improve-
ment in the selected quality metrics is observed.
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Figure 5. Same as in Fig. 2 except that the cumulative distributions
for usable iris area (UIA) are plotted.
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Figure 6. Same as in Fig. 2 except that the cumulative distributions
for motion blur (MB) are plotted.

When answering the question 2 (subsection 4.2) we
found that those rejected in the first attempt generate bet-
ter quality scores than in the first try, and further improve-
ment in the third try is not observed. This seems to perfectly
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coincide with the usable iris area quality metric, which is
better for those rejected in the first try and repeating their
attempt for the second time, Fig. 5. This difference is statis-
tically significant (p-value= 0.016). Decrease of the usable
iris area in the third attempt for those rejected once (Fig.
5), and differences in the motion blur (Fig. 8) are not statis-
tically significant (p-values exceed 0.1 in all those cases).
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Figure 7. Same as in Fig. 3 except that the cumulative distributions
for usable iris area (UIA) are plotted.
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Figure 8. Same as in Fig. 3 except that the cumulative distributions
for motion blur (MB) are plotted.

Hence, we can provide the following, multi-part answer
to question 3: selected quality metrics (dependent on the
subject’s behavior) only partially explain the differences
in the average comparison scores. Namely, those rejected
in the first try and improving their comparison score in the
second attempt open the eyes wider and are not able to sta-
bilize their head more. Those rejected twice and presenting
their eyes for the third time do not provide samples of sig-
nificantly better quality.

5. Conclusions
Our results show that persons who make a second at-

tempt (due to the first attempt not succeeding) will have

a lower success rate than those who make a first attempt
(some of whom succeed and some of whom do not). At
the same time, those persons who make a second attempt
do, on average, improve the quality of their biometric sam-
ple relative to that provided on their first attempt. And they
do improve their probability of success. But this improve-
ment is relative to the 0% success that resulted from this
group on the first attempt. Even with improved biometric
sample quality on their second attempt relative to their first
attempt, the group of persons whose first attempt failed does
not achieve second-attempt success equal to that of the over-
all group’s first-attempt success.

Subjects are able to improve some dimensions of bio-
metric sample quality more than other dimensions. For iris
recognition, it appears that, on average, subjects are more
able to improve the usable iris area dimension of quality
than the motion blur dimension. This suggests that iris
recognition users could potentially be ”coached” to give
better quality samples on the first attempt by giving instruc-
tions related to the dimensions most under user control. In
the iris recognition context of our experiments, allowing a
third attempt appears to have marginal value.

Perhaps the major result from our work is that the com-
mon understanding of how a multi-attempt transaction will
increase the overall transaction success rate is simply incor-
rect. Allowing a third or a fourth attempt within a transac-
tion is not an effective means to increase the overall trans-
action success rate. Another important result is that at least
some dimensions of sample quality are under conscious
control of the user. Explicitly prompting the user for a high-
quality sample on these dimensions could result in a higher
first-attempt success rate.
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