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Abstract

Automatic detection of textured contact lenses in im-
ages acquired for iris recognition has been studied by
several researchers. However, to date, the experimen-
tal results in this area have all been based on the same
manufacturer of contact lenses being represented in both
the training data and the test data and only one previ-
ous work has considered images from more than one iris
sensor. Experimental results in this work show that ac-
curacy of textured lens detection can drop dramatically
when tested on a manufacturer of lenses not seen in the
training data, or when the iris sensor in use varies be-
tween the training and test data. These results suggest
that the development of a fully general approach to tex-
tured lens detection is a problem that still requires atten-
tion.

1. Introduction

Textured contact lens detection is an important prob-
lem in preventing spoofing in iris recognition systems.
A number of approaches have been reported in the lit-
erature in recent years, many reporting correct classifi-
cation rates of over 95% on their experimental dataset.
These approaches are based on computing texture fea-
tures from the iris image and training a classifier to dis-
tinguish the case of no textured lens versus the case of
textured lens. Some commercial iris biometrics systems
also claim to have a method for detecting the presence
of textured contact lenses to prevent a spoofing attempt
[8]. In all results reported to date, the contact lens man-
ufacturer(s) represented in the test data have also been
represented in the training data. Also, only one previous
paper has considered images acquired from more than
one iris sensor. In practice, it is desirable that algorithms

developed with image data from one sensor may be mi-
grated to work with another sensor. And, importantly,
In many applications, it is not reasonable to assume that
the algorithm will have been developed using image data
from all manufactures of contact lenses that will be ex-
perienced in operation.

This paper outlines a potential textured lens detection
algorithm and highlights the potential issues with tex-
tured lens detection systems. Related work is outlined
in Section 2. A detailed description of the problem is
presented in Section 3. Section 4 describes the dataset
used in this work and how the problem was addressed.
Results of the experiment are presented in Section 5. Fi-
nally, concluding remarks are given in Section 7.

2. Related Work

As early as 2003, Daugman [3] proposed using a
Fourier transform to detect the highly periodic fake iris
pattern that was prevalent in textured lenses manufac-
tured at that time. Newer lenses have multiple layers of
printing, making the Fourier response less pronounced,
and textured lens detection by this method less reliable.
Additionally, not all textured lenses necessarily use a
dot-matrix style printing method.

Lee et al. [11] suggest that the Purkinje images will
be different between a live iris and a fake iris. They
propose a novel iris sensor with structured illumination
to detect this difference in Purkinje images between a
known model of the human eye and observed fake iris
texture. They report results on a dataset of 300 genuine
iris images and 15 counterfeit images. They report a
False Accept Rate and False Reject Rate of 0.33% on
the data, but suggest that the dataset may be too small
to draw generalized conclusions. This work is substan-
tially different from the classifier trained on texture fea-
tures approaches described in this paper and used by the



remaining citations below.

He et al. [6] propose training a support-vector ma-
chines on texture features in a gray-level co-occurrence
matrix (GLCM). They constructed a dataset of 2000
genuine iris images from the SJTU v3.0 database and
250 textured lens images, of which 1000 genuine and
150 textured are used for training. They report a correct
classification rate of 100% on the testing data.

Wei et al. [15] analyze three methods for textured
contact lens detection: measure of iris edge sharpness,
characterizing iris texture through Iris-Textons, and co-
occurrence matrix (CM). Two class-balanced datasets
are constructed using CASIA and BATH for genuine
iris images and a special acquisition for textured con-
tact lenses. Each dataset contained samples of a single
manufacturer of textured contact lenses. Correct classi-
fication rates for the three methods and two datasets vary
between 76.8% and 100%.

He et al. [7] use multi-scale Local Binary Patterns
(LBP) as a feature extraction method and AdaBoost
as a learning algorithm to build a textured lens classi-
fier. They acquire a custom dataset of 600 images with
20 different varieties of fake iris texture, a majority of
which are textured contact lenses. A training set of 300
false iris images is combined with 6000 images from the
CASIA Iris-V3 and ICE v1.0.

Zhang et al. [16] investigated the use of Gaussian-
smoothed and SIFT-weighted Local Binary Patterns to
detect textured lenses in images acquired with multiple
iris cameras. They constructed a dataset of 5000 fake iris
images with 70 different textured lens varieties. They re-
port a correct classification rate of over 99% when train-
ing on heterogenous data, but this drops to 88% when
different sensors are used for training and testing sets.

Doyle et al. [4] present an analysis of modified local
binary pattern texture extraction to classify an iris image
as no lens, transparent lens, or textured lens. Several
machine learning algorithms are investigated and an en-
semble of trained classifiers is constructed. A dataset of
1000 images from each of the three classes is used for
training, and a dataset of 400 images per class is used
to test. A correct classification for the three class prob-
lem is 71% but increases to 98% when detecting textured
lenses alone.

Kohli et al. [10] perform an analysis of the effects
of various types of contact lenses on the performance in
a commercial iris biometrics system. They investigate
four techniques for contact lens detection and present
ROC curves demonstrating an improvement when lens
detection is used to filter probe images.

3. Problem Definition
Textured contact lenses are designed to alter the ap-

pearance of the wearer’s eye, giving it a different color
and/or texture. Unfortunately, they also greatly reduce
the amount of genuine iris texture visible to iris recog-
nition systems, greatly increasing the chance of a false
non-match. Accordingly, these images should be re-
jected at the time of segmentation, before a template is
generated for them.

Soft lenses have additionally been shown[1] to nega-
tively impact the performance of an iris biometrics sys-
tem. Users who wear soft lenses may experience a
higher false non-match rate than users who do not wear
soft contact lenses. A first step in correcting this lower
true accept rate is determining which subjects are wear-
ing soft contact lenses.

Sample images of an iris with no contact lens, a soft
contact lens, and a textured lens appear in Figures 1 and
2. Figures 1(c) and 2(c) show how a textured lens ob-
scures genuine iris texture.

4. Experimental Method
4.1. Data Set

Two datasets were constructed for the evaluation of
textured lens detection. Dataset I consists of a training
set of 3000 images and a verification set of 1200 im-
ages. All images were acquired with an LG 4000 [12]
iris camera. Both the training set and the verification
set are divided equally into three classes: (1) no con-
tact lenses, (2) soft, non-textured contact lenses, and (3)
textured contact lenses. Classes (1) and (2) are balanced
between male and female, and represent a variety of eth-
nicities. Category (3) images are predominantly from
Caucasian males. Dataset II consists of a training set
of 600 images and a verification set of 300 images. All
images were acquired with an IrisGuard AD100 [8] iris
camera. Again, the dataset is balanced across the three
categories in the same manner.

All textured contact lenses in the dataset came
from three major suppliers of textured lenses: John-
son&Johnson [9], Ciba Vision [2], and Cooper Vision
[14]. Multiple colors were selected for each manufac-
turer and some lenses were also toric lenses designed to
correct for astigmatism.

Both datasets are segmented using a commercially
available iris biometrics SDK to extract center and ra-
dius for circles defining the pupillary boundary and the
limbic boundary. Segmentations for the training sets
were inspected visually by overlaying circles defined by
the segmentation algorithm. Ill-fitting circles were cor-



(a) No Lens - Full (b) Soft Lens - Full (c) Textured Lens - Full

(d) No Lens - Pupil (e) Soft Lens - Pupil (f) Textured Lens - Pupil

(g) No Lens - Iris (h) Soft Lens - Iris (i) Textured Lens - Iris

(j) No Lens - Sclera (k) Soft Lens - Sclera (l) Textured Lens - Sclera

Figure 1. Sample LG400 images for the three classes showing the original images and the unrolled sections from which the features
were extracted. The no lens images were taken from sample 05629d33. The soft lens images were taken from sample 05675d5684.
The textured lens images were taken from sample 04261d2211.

(a) No Lens - Full (b) Soft Lens - Full (c) Textured Lens - Full

(d) No Lens - Pupil (e) Soft Lens - Pupil (f) Textured Lens - Pupil

(g) No Lens - Iris (h) Soft Lens - Iris (i) Textured Lens - Iris

(j) No Lens - Sclera (k) Soft Lens - Sclera (l) Textured Lens - Sclera

Figure 2. Sample AD100 images for the three classes showing the original images and the unrolled sections from which the features
were extracted. The no lens images were taken from sample 05629d932. The soft lens images were taken from sample 05675d1366.
The textured lens images were taken from sample 04261d3849.
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Figure 3. A 3x3 neighborhood of pixels (a) with values (b) can be converted into a Binary Pattern by comparing perimeter values
against the center value. A larger perimeter value gets replaced with a 1 and a smaller or equal perimeter value is replaced with a 0
in (c). Starting with the upper left neighbor and working clockwise, a binary number (d) is formed. The binary value is converted
to decimal format for a final scalar value (e) and added into the histogram of values for the entire image (f).

rected. The verification set segmentation was not veri-
fied, to better simulate a real-world iris biometrics sys-
tem. The data is also divided into 10 subject-disjoint and
class-balanced folds for training evaluation.

4.2. Feature Extraction

The segmentation divides each iris image into three
regions: (1) pupil, (2) iris, and (3) sclera. Examples of
extracted regions appear in Figures 1 and 2.

Modified Local Binary Pattern analysis (described in
Figure 3 and similar to [13]) is applied to each region of
each image at multiple scales to produce feature values.
The pupil, iris, and sclera all have significantly differ-
ent appearances, and as such the binary pattern analy-
sis is performed separately for each region. Unlike tra-
ditional LBP, this method does not decompose the im-
age into blocks and independently analyze each block to
construct a large feature vector. Instead, the extracted
region is treated as one large block. The kernel size for
the binary pattern analysis is scaled from 1 to 20 in in-
crements of 1 for a total of 20 different feature sets for
each of three regions and 60 feature sets overall.

4.3. Model Training

Sixteen different classifiers, intentionally sampling a
variety of different classifier technologies [5], were ex-
plored as possible approaches to train models on the fea-
ture sets. Each of the feature sets described in Section
4.2 is treated as an independent dataset for the purposes
of model training.

For data-mining algorithms that had tunable param-
eters, a parameter sweep was conducted with reason-
able values. The predefined folds for each dataset are
used to evaluate the performance of each trained model
by cross-fold evaluation. If a classifier yielded a cor-
rect classification rate (CCR) of 100% on all 10 folds,
a model was built using all training data. This process
resulted in an ensemble of trained models to be evalu-
ated on the verification set. The total number of trained
models was 472 for Dataset I and 983 for Dataset II.

5. Novel Sensor Experimental Results
Two experiments were performed to evaluate the cor-

rect classification rate of the constructed model ensem-
bles on Dataset I and II. Both the intra-sensor and inter-
sensor cases are considered.

5.1. Intra-Sensor Validation

The performance of the ensembles built for both
training datasets is evaluated on the corresponding ver-
ification sets. For each image of each verification set,
a prediction and a confidence is output by each of the
model ensembles. A final prediction for each image is
decided by taking the maximum of the sum of confi-
dences for each ensemble for each class. Both datasets
yield similar accuracy for detecting textured lenses in
the Inter-sensor experiment. Note that each classifier in
the ensemble was achieving 100% correct classification
on the training set.

For Dataset I, the final ensemble resulted in a CCR of
over 65% on the three-class problem. Nearly 83% of the
images containing a textured contact lens were correctly
detected. The confusion matrices can be found in Figure
4.

For Dataset II, the final ensemble resulted in a CCR
of 71% on the three-class problem. The accuracy of
detecting instances of textured contact lenses was quite
high. Nearly 96% of the images containing a textured
contact lens were correctly detected. The confusion ma-
trices can be found in Figure 5.

5.2. Inter-Sensor Validation

The performance of the ensembles built for both
training datasets is evaluated on the other’s verification
sets. For each image of each verification set, a prediction
and a confidence is output by each of the model ensem-
bles. A final prediction for each image is decided by
taking the maximum of the sum of confidences for each
ensemble for each class. Both datasets perform about
equally in the Inter-sensor experiment.

For Dataset I models on Dataset II data, the final
ensemble resulted in a CCR of 53% on the three-class



None Soft Textured Total
None 258 172 33 463
Soft 35 162 1 198

Textured 107 66 366 539
Total 400 400 400 1200

(a) 3-Class Problem

None/Soft Textured Total
None/Soft 627 34 661
Textured 173 366 539

Total 800 400 1200
(b) 2-Class Problem (Textured/Non-Textured)

Figure 4. Intra-sensor confusion matrices for the 3-class prob-
lem and the 2-class problem on Dataset I. For each matrix, the
true class is the column label and the resulting classification is
the row label.

None Soft Textured Total
None 80 55 4 139
Soft 19 39 2 60

Textured 1 6 94 101
Total 100 100 100 300

(a) 3-Class Problem

None/Soft Textured Total
None/Soft 193 6 199
Textured 7 94 101

Total 200 100 300
(b) 2-Class Problem (Textured/Non-Textured)

Figure 5. Intra-sensor confusion matrices for the 3-class prob-
lem and the 2-class problem on Dataset II. For each matrix, the
true class is the column label and the resulting classification is
the row label.

problem, a significant drop in performance over the
intra-sensor validation. The accuracy of detecting in-
stances of textured contact lenses also dropped to 66%.
The confusion matrices can be found in Figure 6.

For Dataset II models on Dataset I data, the final
ensemble resulted in a CCR of 42% on the three-class
problem, a significant drop in performance over the
intra-sensor validation. The accuracy of detecting in-
stances of textured contact lenses also dropped to nearly
64%. The confusion matrices can be found in Figure 7.

6. Novel Lens Experimental Results
A third experiment was performed to evaluate the ef-

fects of a previously unseen textured lens. Models were
trained on images of two of the three textured lens man-
ufacturers, and then the models were evaluated with im-
ages of lenses from the third manufacturer. All images

None Soft Textured Total
None 44 25 4 73
Soft 14 19 0 33

Textured 42 56 96 194
Total 100 100 100 300

(a) 3-Class Problem

None/Soft Textured Total
None/Soft 102 4 106
Textured 98 96 194

Total 200 100 300
(b) 2-Class Problem (Textured/Non-Textured)

Figure 6. Inter-sensor confusion matrices for the 3-class prob-
lem and the 2-class problem on Dataset II data using Dataset I
models. For each matrix, the true class is the column label and
the resulting classification is the row label.

None Soft Textured Total
None 83 48 94 225
Soft 215 250 136 601

Textured 102 102 170 374
Total 400 400 400 1200

(a) 3-Class Problem

None/Soft Textured Total
None/Soft 596 230 826
Textured 204 170 374

Total 800 400 1200
(b) 2-Class Problem (Textured/Non-Textured)

Figure 7. Inter-sensor confusion matrices for the 3-class prob-
lem and the 2-class problem on Dataset I data using Dataset II
models. For each matrix, the true class is the column label and
the resulting classification is the row label.

were acquired with the LG4000 camera and come from
Dataset I. A constant set of no lens and soft lens im-
ages, a subset of Dataset I, was also used to preserve the
three-class problem as presented in Section 5. For all
three lens manufacturers, the introduction of a novel lens
in the testing set reduced the correct classification rate
from the observed rate of 100%. The performance hit
ranges from a minimum of 4% to a maximum of 43%,
an extremely significant degradation. Full results can be
seen in Figure 10. Sample images for each of the three
textured lens manufacturers can be found in Figures 8
and 9.

On average, the novel Cooper Vision lens was the
least affected of the three in the novel lens analysis.
A visual inspection of the lenses as presented in Fig-
ure 9 may offer some insight into why this is the case.
The Ciba Vision lens exhibits a clear dot-matrix pattern.



(a) No Lens (b) Ciba

(c) Cooper (d) J&J

Figure 8. Enhanced and cropped AD100 sample images for the three textured lens manufacturers in this work in the same eye.

(a) No Lens (b) Ciba

(c) Cooper (d) J&J

Figure 9. Cropped LG 4000 sample images for the three textured lens manufacturers in this work in the same eye.



Classifier Ciba Cooper J&J
Naive Bayes 75.34% 90.59% 72.67%

Bagging 62.74% 94.52% 72.07%
LogitBoost 72.13% 92.86% 67.22%

JRip 61.35% 95.24% 67.28%
J48 65.28% 91.83% 60.05%

Rand. Forest 57.38% 95.97% 64.11%
Figure 10. Classifier performance when a novel lens is used
to evaluate the trained models. All images were acquired us-
ing the LG4000 sensor. The lens manufacturer at the top of
the column represents the novel lens. For instance, data in the
first column is trained on samples of Cooper Vision and John-
son&Johnson lenses and then evaluated on images from Ciba
Vision.

The Johnson&Johnson lenses are, in contrast, streaks
of texture oriented towards the center-point of the lens.
The Cooper Vision lens appears to be somewhere be-
tween the Ciba Vision and Johnson&Johnson lenses in
its printing technique.

7. Discussion
One major result of this work is to highlight the sen-

sitivity of textured contact lens detection to the composi-
tion of the training data. A classifier that achieves 100%
correct detection of textured lenses when trained on a
mixture of three lens types may fall to below 60% when
trained on just two of the lens types and encountering
the third as a new lens type. All previous work in this
area has considered only the experimental paradigm in
which the same type of textured contact lens was present
in both the training and the test data.

Another major result of this work is to highlight the
sensitivity of textured contact lens detection to the com-
position of the training data in the sense of the iris sensor
involved. A classifier trained on images from one type
of iris sensor may have a significant degradation in per-
formance when applied to images from a different type
of sensor.

Further experimentation will examine more manufac-
turers of textured lenses. More advanced features than
the simple binary patterns evaluated in this work may
yield higher correct classification rates and me more
general across different sensors and lens types. Future
work will also simplify features and classifiers to only
those actually needed.
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