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Abstract

Textured cosmetic lenses have long been known to
present a problem for iris recognition. It was once be-
lieved that clear, soft contact lenses did not impact iris
recognition accuracy. However, it has recently been
shown that persons wearing clear, soft contact lenses
experience an increased false non-match rate relative
to persons not wearing contact lenses. Iris recognition
systems need the ability to automatically determine if
a person is (a) wearing no contact lens, (b) wearing a
clear prescription lens, or (c), wearing a textured cos-
metic lens. This work presents results of the first attempt
that we are aware of to solve this three-class classifica-
tion problem. Results show that it is possible to iden-
tify with high accuracy (96.5%) the images in which a
textured cosmetic contact lens is present, but that cor-
rectly distinguishing between no lenses and soft lenses
is a challenging problem.

1. Introduction

Flom and Safir [4] proposed the texture of the iris as
a biometric modality in a 1987 patent. The first working
iris biometric algorithm was developed by John Daug-
man [2] and is the basis for many of the commercial
systems available on the market today. In [3], Daugman
proposes that iris biometric systems “can tolerate a huge
amount of corruption in iris images due to ... contact
lenses ...” among other image artifacts.

Some commercial iris biometrics systems claim to
have a method for detecting the presence of textured
contact lenses, to prevent a spoofing attempt. Hard
contact lenses, otherwise known as rigid gas-permeable
lenses, also present some issues to iris biometrics system
as they greatly alter the appearance of the iris texture.
Some iris biometrics systems also detect the presence of
hard contact lenses and attempt to mask out the affected

region of the iris. Traditional thought is that clear, soft,
non-cosmetic contact lenses do not alter the imaged iris
texture enough to be of concern. As a result, we know
of no iris biometrics system that attempts to detect or
mitigate the effects of clear, soft, non-textured contact
lenses.

Since the purpose of a prescription contact lens is
to change the optical properties of the eye, it must, by
definition, have some effect on the iris texture observed
through it. Clear, soft, non-textured lenses are also able
to move around slightly, resulting in a slightly different
observed effect on the iris texture from acquisition to
acquisition. Some soft lenses also have visible markings
on them, which may be observed in different locations
from acquisition to acquisition. Some lenses also have
a noticeable boundary between the support region of the
lens and the corrective region of the lens, which can alter
the appearance of the iris texture.

Detection of the presence of a clear, soft, non-
cosmetic contact lens is a first step to improving the us-
ability of iris biometrics systems for contact lens wear-
ers. One simple solution might be to change the deci-
sion threshold when a contact lens is detected such that
the false non-match rate (FNMR) is identical to users
who do not wear lenses. Detection is also a first step to
performing any sort of image correction on images with
contact lens artifacts.

This paper presents an approach to classifying an iris
image into one of three categories: (1) textured contact
lens, (2) soft, non-textured contact lens, and (3) no con-
tact lens. Related work is outlined in Section 2. A de-
tailed description of the problem is presented in Section
3. Section 4 describes the dataset used in this work and
how the problem was addressed. Results of the exper-
iment are presented in Section 5. Finally, concluding
remarks are given in Section 6.



2. Related Work

It has long been believed that clear prescription con-
tacts do not affect the accuracy of iris recognition. For
example, an article appearing in IEEE Computer in 2000
stated, “Successful identification can be made through
eyeglasses and contact lenses [9]. As recently as 2010,
sources such as Wikipedia contained claims such as,
“Iris recognition efficacy is rarely impeded by glasses
or contact lenses [13]. Even currently, India’s UIDAI
site contains the statement, “Iris recognition is rarely im-
peded by glasses or contact lenses...” [11].

Baker et al. [1] show that clear, soft, non-cosmetic
lenses cause an increase in the FNMR. Using a dataset
of images from the LG 2200 sensor, Baker et al found
that the FNMR for contact wearers was twenty times
higher than non-wearers. The same basic effect is ob-
served with our dataset of images from the newer LG
4000 sensor (Figure 1). Sample images of a subject with
and without a contact lens are shown in Figures 2(b) and
2(a) respectively.

Methods for detecting textured lenses have been well
researched. He et al. [6] used Local Binary Patterns
(LBP) as a feature extraction method and AdaBoost as
a learning algorithm to build a textured lens classifier.
Zhang et al. [14] investigated the use of Gaussian-
smoothed and SIFT-weighted Local Binary Patterns to
detect textured lenses in images acquired with multiple
iris cameras.

Kohli et al. [7] perform an analysis of the effects of
various types of contact lenses on the performance if a
commercial iris biometrics system. They present ROC
curves demonstrating an improvement when lens detec-
tion is used to filter probe images.

3. Problem Definition

Textured contact lenses are designed to alter the ap-
pearance of the wearer’s eye, giving it a different color
and/or texture. Unfortunately, they also greatly reduce
the amount of genuine iris texture visible to iris recog-
nition systems. Increasing the chance of a false non-
match. Accordingly, these images should be rejected at
the time of segmentation, before a template is generated
for them.

The effect of soft lenses is much less obvious. The
genuine iris texture is not concealed in the manner it
is with textured contact lenses. However, the negative
impact on iris biometrics systems by soft lens wearers
has been documented [7, 1]. We found a similar de-
graded performance for clear prescription contacts with
the dataset used in this work, as shown in Figure 1. Be-

Figure 1. ROC curves for the three classes in the NDCCL12
dataset as determined by a commercially available matcher.

fore an iris biometrics system can perform any correc-
tive measures for subjects who wear soft, non-cosmetic
contact lenses, it must first be able to determine which
subjects are wearing such lenses.

Sample images of an iris with no contact lens, a soft
contact lens, and a textured lens can be found in Figure
2. Figure 2(b) demonstrates both how a soft lens can
produce an artifact in the iris region of the image, and
also how difficult it can be to detect the outer boundary
of the soft lens.

4. Experimental Method
4.1. Data Set

Our results in this paper are based on the Notre Dame
Cosmetic Contact Lenses 2012 [12] dataset, which to
our knowledge is the only publicly-available iris im-
age dataset that supports research in detection of contact
lenses. The dataset consists of a training set of 3, 000 im-
ages and a verification set of 1, 200 images. All images
were acquired with an LG 4000 [8] iris camera. Both the
training set and the verification set are divided equally
into three classes: (1) no contact lenses, (2) soft, non-
cosmetic contact lenses, and (3) textured contact lenses.
Categories (1) and (2) are balanced between male and
female, and represent a variety of ethnicities. Category
(3) images are predominantly Caucasian male.

All textured contact lenses in the dataset came
from three major suppliers of textured lenses: John-
son&Johnson, Ciba Vision and Cooper Vision. Multi-
ple colors were selected for each manufacturer and some



(a) No Lens - Full (b) Soft Lens - Full (c) Textured Lens - Full

(d) No Lens - Pupil (e) Soft Lens - Pupil (f) Textured Lens - Pupil

(g) No Lens - Iris (h) Soft Lens - Iris (i) Textured Lens - Iris

(j) No Lens - Sclera (k) Soft Lens - Sclera (l) Textured Lens - Sclera

Figure 2. Sample images for the three classes showing the original images and the unrolled sections from which the features were
extracted. The no lens images were taken from sample 04233d2567. The soft lens images were taken from sample 04261d994. The
textured lens images were taken from 07015d1314.

lenses were also toric.
The dataset provides segmentation information as

center and radius for circles defining the pupillary
boundary and the limbic boundary. The data is also pre-
divided into 10 subject-disjoint and class-balanced folds
for training evaluation.

4.2. Feature Extraction

The known segmentation provided by the NDCLD12
dataset is used to break each iris image into three re-
gions: (1) pupil, (2) iris, and (3) sclera. The sclera region
is extended slightly such that it includes 20 pixels of iris
texture and not more than 60 pixels of scleral data for
each angle. This attempts to capture contact lens bound-
aries that may have shifted into the iris region while also
limiting the amount of eyelid and eyelash occlusion. Ex-
amples of the regions after extraction can be found in
Figure 2.

Modified Local Binary Pattern analysis (described in
Figure 3 and similar to [10]) is applied to each region
of each image at multiple scales (shown in Figure 4) to
produce feature values. The pupil, iris, and sclera all
have significantly different appearances, and as such the
binary pattern analysis is performed separately for each
region. Unlike traditional LBP, this method does not de-
compose the image into blocks and independently ana-
lyze each block to construct a large feature vector. The

kernel size for the binary pattern analysis is scaled from
1 to 15 in increments of 1 for a total of 15 different fea-
ture sets for each of three regions and 45 feature sets
overall.

4.3. Model Training

Fourteen different classifiers, intentionally sampling
a variety of different classifier technologies [5], were ex-
plored as possible approaches to train models on the fea-
ture sets. Each of the 45 feature sets described in Section
4.2 is treated as an independent dataset for the purposes
of model training.

For data-mining algorithms that had tunable parame-
ters, a parameter sweep was conducted with reasonable
values. A breakdown of the parameters evaluated can
be found in Table 1. The predefined folds in the ND-
CCL12 dataset are used to evaluate the performance of
each trained model by cross-fold evaluation. The pa-
rameters yielding the highest correct classification rate
(CCR) for each algorithm were recorded, and a model
was built with the same parameters but using all train-
ing data. This process resulted in an ensemble of trained
models totaling 14 ∗ 3 ∗ 15 = 630 to be evaluated on the
verification set.
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Figure 3. A 3x3 neighborhood of pixels (a) with values (b) can be converted into a Binary Pattern by comparing perimeter values
against the center value. A larger perimeter value gets replaced with a 1 and a smaller or equal perimeter value is replaced with a 0
in (c). Starting with the upper left neighbor and working clockwise, a binary number (d) is formed. The binary value is converted
to decimal for a final scalar value (e) and added into the histogram of values for the entire image (f).

(a) 3x3 kernel with scale = 1

(b) 3x3 kernel with scale = 2

Figure 4. Sample kernels for the modified Local Binary Pattern
feature extraction.

4.4. Model Evaluation

To improve the overall CCR of the ensemble of mod-
els, an exhaustive comparison of all possible model

Table 1. Classifiers and Parameter Combinations
Classifier Params # Permuts

Naive Bayes 1 2
Logistic 0 1

M.layer Perceptron 7 2,160
KStar 2 50
IBk 4 52

Bagging 4 80
Logit Boost 8 6,480

JRip 4 2,662
ZeroR 0 1
OneR 1 10
NNge 2 64
J48 3 570

Random Tree 5 1,080
Random Forest 4 576

combinations would ideally be performed. However,
this would have resulted in a comparison space of 2630

combinations. To reduce the comparison space to a
tractable problem, sub-groups of models were consid-
ered in a 3-step hierarchical tournament. Each ensem-
ble of 14 models constructed for each of the 45 region-
scale combinations was evaluated as an independent
group, for a manageable comparison space of 45∗214 =
737, 280 combinations. This resulted in 45 ensembles of
models to be exhaustively compared in a second round
of the model evaluation, which while more manage-
able than before, was still intractable for the scope of
this research. Additionally, many of the 45 ensembles
achieved 100% CCR on the training data, making fur-
ther evaluation on the training data irrelevant.

5. Experimental Results
The performance of the 45 ensembles is evaluated on

the 1, 200 image verification set provided as part of the
NDCCL12 dataset. For each image of the verification
set, a prediction and a confidence is output by each of
the 45 model ensembles. A final prediction for each im-



age is decided by taking the maximum of the sum of
confidences for each ensemble for each class. The final
ensemble resulted in a CCR of over 70% on the three-
class problem. The accuracy on detecting instances of
textured contact lenses was quite high. Over 96.5% of
the images containing a textured contact lens were cor-
rectly detected. The CCR on a 2-class1 problem of de-
ciding whether or not an iris image contains a textured
lens was nearly 98%. The confusion matrices can be
found in Figure 5.

None Soft Textured Total
None 262 192 13 467
Soft 114 201 1 316

Textured 24 7 386 417
Total 400 400 400 1, 200

(a) 3-Class Problem

None/Soft Textured Total
None/Soft 396 13 409
Textured 4 387 391

Total 400 400 800
(b) 2-Class Problem (Textured/Non-Textured)

None Soft Total
None 219 179 398
Soft 160 209 369
Total 379 388 767

(c) 2-Class Problem (Soft/None)

Figure 5. Confusion matrices for the 3-class problem and the
2-class problem. For each matrix, the true class is presented
vertically and the resulting classification is presented horizon-
tally. For (c) there were 33 images classified as Textured lenses
which were left out of the confusion matrix.

6. Discussion
One major contribution of this work is that it is the

first to tackle the important three-class problem of cat-
egorizing iris images as no lens, clear lens, or textured
lens. Iris recognition systems need the ability to auto-
matically perform this classification, so that appropriate

1Translating the dataset into a two-class problem while maintain-
ing balanced classes required half of the no lens and half of the soft
lens data to be removed from consideration. To preserve the distri-
bution of no lens / soft lens, male / female, and left / right eye, eight
counters were maintained while traversing the original ordering of the
validation set file. Only images encountered on the even numbers were
retained. For instance, the male-right-soft counter was incremented
every time a right-eye image of a male subject wearing a soft contact
lens the counter was increased. If the counter was odd after the incre-
ment, the image was included in the dataset, otherwise it was excluded.
A listing of the images that were included in the two class problem can
be obtained via email.

action can be taken.
Another contribution of this work is that we were

able to obtain a 96.5% correct detection of iris images
that contain a textured contact lens. The textured lenses
represented a sampling of different color textured lenses
for major manufacturers. This work is the first to use
a publicly-available dataset with no-lens, soft-lens, and
textured-lens groups.

While we were able to detect 262 of 400 no-lens im-
ages in the separate test set, the overall accuracy of dis-
tinguishing between no-lens images and clear-lens im-
ages is still too low.

Further experimentation will attempt to improve the
soft lens detection rate. More advanced features than
the simple binary patterns evaluated in this work may
yield higher correct classification rates. Future work will
simplify features and classifiers to only those actually
needed.
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