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A Robust Visual Method for Assessing
the Relative Performance

of Edge-Detection Algorithms
Michael D. Heath, Sudeep Sarkar, Member, IEEE Computer Society,

Thomas Sanocki, and Kevin W. Bowyer, Senior Member, IEEE

Abstract —A new method for evaluating edge detection algorithms is presented and applied to measure the relative performance of
algorithms by Canny, Nalwa-Binford, Iverson-Zucker, Bergholm, and Rothwell. The basic measure of performance is a visual rating
score which indicates the perceived quality of the edges for identifying an object. The process of evaluating edge detection
algorithms with this performance measure requires the collection of a set of gray-scale images, optimizing the input parameters for
each algorithm, conducting visual evaluation experiments and applying statistical analysis methods. The novel aspect of this work is
the use of a visual task and real images of complex scenes in evaluating edge detectors. The method is appealing because, by
definition, the results agree with visual evaluations of the edge images.

Index Terms —Experimental comparison of algorithms, edge detector comparison, low level processing, performance evaluation,
analysis of variance, human rating.

——————————   ✦   ——————————

1 INTRODUCTION

HE continued development of edge detectors is produc-
ing increasingly complex edge detection algorithms.

While the field has come a long way since the algorithms of
Roberts [1] and Sobel [2], there is a belief that the “increased
sophistication (of newer algorithms) is not producing a
commensurate improvement in performance” [3]. This con-
jecture, however, is hard to confirm or disprove since most of
the published methods for evaluating edge detectors have
not been widely accepted by researchers in the edge detec-
tion community. This is evident from their limited applica-
tion in publications. Table 1 lists 21 algorithms published in
three major journals within just the last three years. None of
these give any objective performance comparison.

This paper presents a new edge detector evaluation method
that was motivated by three ideas. The first idea is that a com-
parison of edge detectors should be done using real images.
This was noted by Zhou et al. [4]: “Any conclusions based on
these comparisons of synthetic images have limited value. The
reason is that there is no simple extrapolation of conclusions
based on synthetic images to real images!” The second idea is
that an evaluation method should produce results that corre-
late with the perceived quality of edge images. This was noted
by Cinque et al. [5]: “Although it would be nice to have a
quantitative evaluation of performance given by an analytical
expression, or more visually by means of a table or graph, we

must remember that the final evaluator is man and that his
subjective criteria depend on his practical requirements.” The
third idea is that edge detectors should be evaluated within a
vision system performing a task. This was expressed by
Cinque et al. [5], “We strongly appreciate the attempt to char-
acterize the quality of an image processing system independ-
ently from the task it is performing, and, as mentioned above,
we realize that many difficulties in achieving such a goal may
be encountered. We believe that we still have a long way to go
and therefore must now principally rely on human judgment
for obtaining a practical evaluation; for some specific applica-
tions we feel that this is doomed to be the only possibility.”

Assessing the performance of edge detection algorithms
is difficult because the performance depends on several
factors. At a minimum, these are:

1) the algorithm itself,
2) the type of images used to measure the performance

of the algorithm,
3) the edge detector parameters used in the evaluation, and
4) the method for evaluating the edge detectors.

The approach taken to evaluate edge detectors in this work
was to measure their performance using a general purpose
evaluation function, to use real images in the evaluation and to
select the parameters for each algorithm in a meaningful way
that was not biased towards any algorithm. The human visual
system was selected for the evaluation function because at the
present time it is the most general purpose vision system.

The method presented in this paper is a refinement of a
method previously introduced in [6]. In that work, the rela-
tive performance of the Sobel (with added hysteresis),
Nalwa-Binford [8], Canny [9], and Sarkar-Boyer [10] edge
detectors were measured using eight images. This paper
expands on that initial study:
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1) to compare a broad sampling of recently proposed
and classic edge detection algorithms,

2) to use a larger sample of images,
3) to improve the method of selecting input parameters,

and
4) to examine how the relative performance of the algo-

rithms might differ between manmade or natural and
textured or nontextured images.

The paper is organized as follows. Related work is re-
viewed in Section 2. The images used for the evaluation are
presented in Section 3. The edge detectors that were compared
are described in Section 4. The methods used in selecting pa-
rameters for the algorithms and the resulting parameter selec-
tions are described in Section 5. A description of the evaluation
experiment and analysis of the results are in Section 6. A dis-
cussion of the methods and results is presented in Section 7.

2 RELATED WORK

A variety of methods have been proposed for assessing the
performance of edge detectors. These methods can be cate-
gorized as shown in Fig. 1. At the highest level, they can be
categorized according to whether they employ a theoretical
analysis or an experimental analysis of the edge pixels pro-
duced by an algorithm. Edge image analysis methods can
be further categorized by whether or not they require
“ground truth” locations of the “true” edges.

Fig. 1. Published methods for edge detector performance evaluation.

2.1 Theoretical Evaluation
A theoretical evaluation is done by applying a mathe-
matical analysis without the algorithm(s) ever being ap-
plied to an image. Instead, the input to the algorithm is
mathematically characterized and the performance is de-
termined analytically or by simulation. Abdou and Pratt
[32] and Ramesh and Haralick [33] developed evaluation
measures of this type. The major limitations of these
methods are the simplistic mathematical models used to
characterize input signals and noise, and the difficulty in

TABLE 1
RECENTLY PUBLISHED EDGE-DETECTION ALGORITHMS

Nature Performance Real image Algorithms
Source of the algorithm presented on ground truth compared

[11](PAMI, 1995) Logical/Linear 2 real 0 Canny
[12](PAMI, 1995) covariance models 3 real 0 none
[13](PAMI, 1994) expansion matching 1 real 0 Canny
[14](PAMI, 1993) dispersion of gradient

direction
1 real 0 Sobel

[15](PAMI, 1993) regularization 2 real 0 LoG, Canny
[16](CVGIP, 1994) voting based 3 real, 3 range,

2 synth
0 Canny

[17](CVGIP, 1994) linear filtering 1 real, 1 synth 0 LoG
[18](PR, 1995) filtering 1 synth, 1 real 0 zero-crossing
[19](PR, 1995) statistical 1 synth, 3 real 0 Sobel
[20](PR, 1995) filtering 7 synth, 1 real 0 none
[21](PR, 1995) filtering 4 real 0 none
[22](PR, 1995) statistical 4 real 0 Canny, LoG
[23](PR, 1995) search 1 synth, 3 real 0 Canny, LoG,

Ashkar&Modestino
[24](PR, 1995) filtering 4 real 0 none
[25](PR, 1994) neural nets 1 synth, 1 real 0 Canny
[26](PR, 1994) genetic opt. 1 synth, 1 real 0 simulated anneal

local search
[27](PR, 1994) co-occurrence 4 synth, 2 real 0 Canny

Jain’s stochastic
[28](PR, 1994) statistical 1 synth, 1 real 0 Sobel, DoG,

Haralick, Ani-
sotropic diffusion

[29](PR, 1993) local masks 2 synth, 2 real 0 other hierarchical
[30](PR, 1993) filtering 1 real 0 none
[31](PR, 1993) statistical 3 real 0 Nalwa, DoG

Edge detection algorithms in PAMI, CVGIP: Image Understanding (renamed Computer Vision and Image Understanding in January 1995) and PR from 1993
through 1995. The number of images corresponds to the images presented in the paper. Ground truth is counted as objective specification of correct edge pixels.
The last column lists the edge algorithms considered in the comparison of algorithms. Note that the Canny edge detector is the one most frequently used for
comparison in the papers presenting new algorithms.
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applying such methods to many of the more modern edge
detectors because of the complexity of their algorithms.

2.2 Evaluation Using Ground Truth
The basic idea of these approaches is to measure the differ-
ence between the detected edges and the ground truth.
Fram and Deutsch [34] did this by measuring the ratio of
the number of correctly detected edge pixels divided by the
number of detected edge pixels and the fraction of a line
“covered” by edge pixels. Abdou and Pratt [32] formulated
a figure of merit that incorporated the displacement of de-
tected edges from their true location. Bryant and Bouldin
[35] measured the correlation between the detected edges
and the ground truth using a method termed absolute
grading. Strickland and Chang [36] described a metric for
calculating an edge quality score as linear combination of
individual measures of edge continuity, smoothness, thin-
ness, localization, detection and noisiness. Jiang et al. pre-
sented a method [37] for evaluating edge detectors using
sixteen performance measures related to correct edges,
spurious edges and missing edges in range image data
using hand specified ground truth. Finally, Kanungo et al.
[38] presented a method for evaluating edge detectors
within a system that did edge detection followed by line
detection.

The limitations of these methods are that they depend
on ground truth so they either rely on synthetic images or
on simple real images for which it is relatively easy to
specify the ground truth. Neither type of image captures
the complexity of real scenes so none of these methods
measure the performance of edge detectors under realistic
conditions.

2.3 Evaluation Without Ground Truth
Kitchen and Rosenfeld [39] evaluated edge detectors using
edge coherence, which measures the continuation and thin-
ness of the detected edges. Bryant and Bouldin [35] used
synthesized ground truth, obtained from a consensus deci-
sion from a suite of edge detection algorithms, to evaluate
edge detectors. Zhu [40] developed a different way to com-
pute and express the method of local edge coherence de-
veloped by Kitchen and Rosenfeld [39]. Palmer et al. [41]
developed a method for evaluating a system that performs
edge detection followed by line detection. A performance
measure was developed that computes a nonlinear combi-
nation of the support for detected lines. Cho et al. [42] ap-
plied bootstrapping to measure the performance of an edge
detection algorithm.

All these methods evaluate either the form of the edges,
the likelihood of a detected edge being a true edge given
the local edge pixel intensities, or the similarity of the de-
tected edges with a synthetic “ground truth.” The principal
limitation of these methods is that they cannot measure the
displacement of the edges from their true locations. There-
fore, they do not suitably capture a necessary component of
the quality of the edges for doing any task. For this reason,
modern edge detectors that blur the image before detecting
the edges can score very highly with these measures by
producing very distorted edges with good form, but that
are not usable for any task.

2.4 The Proposed Method
The emphasis in [6] and in this work, is that real images of
common scenes should be used in the evaluation of edge
detection algorithms. Most methods for evaluating an edge

TABLE 2
SUMMARY OF EDGE DETECTION EVALUATION METHODS

Authors Image Type Images
Used

Requires
Ground
Truth

Comments

Fram & Deutsch [34]
1975

Synth. 1 Synth.
1 Real

Yes Vertical step edge image. Real edge
images not evaluated.

Bryant & Bouldin [35]
1979

Real 1 Real Yes and
No

Subjective ground truth specified for a
single edge by hand.

Abdou & Pratt [32]
1979

Synth. 1 Synth.
3 Real

Yes Horizontal, vertical and diagonal step
edges used.

Kitchen & Rosenfeld
[39] 1981

Real 2 Synth. No Method demonstrated using only syn-
thetic images.

Ramesh and Haralick
[33] 1992

Synth. 1 Synth.
2 Real

Yes Synthetic images were generated for a
ramp edge embedded in noise.

Strickland & Chang [36]
1993

Synth. 1 Synth. Yes Adaptable metric that is difficult to use
with inclined or curved edges.

Jiang et al. [37] 1995 Real 80 Real
(Range)

Yes The use of simple scenes allowed accu-
rate ground truth by hand.

Kanungo et al. [38]
1995

Synth. 1 Synth. Yes Vertical edge with added square wave
noise. Detection task was used.

Cho et al. [42] 1996 Real 1 Real No Evaluates edge detectors that rely on
the same edge model.

Heath et al. [6] 1996 Real 8 Real No Performance evaluated using complex
scenes and an object recognition task.

Zhu [40] 1996 Real 2 Synth.
2 Real

No The method is very similar to the one
used in [39].

Palmer et al. [41] 1996 Real 1 Synth.
5 Real

No Edge detection is evaluated within a line
detection system.

This table lists the papers that have presented methods for doing edge detection evaluation. The image type describes the type of images used by the evaluation
method. The number of images used was measured by counting the number of real images and the number of synthetic images presented in the paper. In the case
of synthetic images, the images that were derived by manipulating a synthetic image were not counted as separate images.
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detector rely on the specification of ground truth. This is
very difficult for real images of common scenes. While it is
possible for people to label some of the edges in an image,
the difficulty in labeling all of the edges is clear to anyone
who has tried to do it. For example, how does one label the
edges on a tree or the edges on a desk with wood grain?

Admittedly, the methods proposed in [39], [35], [40],
[41], and [42] can operate on real images and do not re-
quired ground truth. Unfortunately, each of these methods
leave something to be desired. The methods in [39] and [40]
do not consider the displacement of detected edges from
their true locations. The method in [35] can punish an edge
detector for detecting correct edges if they were missed by
the majority of the edge detectors used to establish the
ground truth. The method in [41] can only be applied to
straight line edges. Finally, the measured performance by
the method in [42] depends on the choice of the algorithm
for establishing the support for perturbing the input.

Our proposed evaluation method relies on the subjective
evaluation of edge images by people. This removes the
need for explicitly specifying the ground truth. Hence it
allows the use of complex real images in the evaluation that
would not be usable by other methods because the ground
truth would be too difficult to specify.

3 IMAGE SELECTION AND CATEGORIZATION

A set of images was collected that contained objects that
people could readily recognize and name. To ensure wide
variety, objects were categorized as manmade or natural
and as textured or nontextured, and images of each type
were collected. Images were obtained by photographing
common objects in their natural settings. All photographs
were taken with a 35-mm camera on color negative film
using a 50-mm lens. The images were then scanned onto
PhotoCD by a commercial lab and were then extracted from
the CD in the 768 � 512, 24 bit/pixel format. Each image
was then converted to gray scale by combining the color
planes in a ratio of 0.299 RED + 0.587 GREEN + 0.114
BLUE. The gray scale images were then cropped to obtain
images nearly 512 ��512 in size, in which the object of inter-
est was clearly in the center of the image. Finally, the im-
ages were scaled to adjust the brightness and contrast to
look good on a computer monitor.

The images were screened to be sure that people could
recognize the central object in each photograph. This was
done because the object recognition task to be performed
with the edge images would not be meaningful if people
could not recognize the object in a photograph.

Each image was then labeled as manmade or natural and
as textured or nontextured, according to the properties of
the central object. While no claim is made that the images in
each category are representative of the corresponding class
of images, the categorization was done to allow a check to
be done on the consistency of the results across meaningful
subsets of the images.

All together, 28 images were selected for use in the
evaluation of the edge detectors. Twenty of these images
were categorized as manmade versus natural and as textured

versus nontextured with five images in each category. Eight
of the 28 images were used in [6] and were carried forward
to these experiments. Fig. 2 shows the 28 images.

4 EDGE DETECTION ALGORITHMS

Three criteria for selecting edge detectors were:

1) to include a diverse mix of algorithms including rep-
resentatives of the state of the art in edge detection,

2) to evaluate only edge detection algorithms that had
been presented to the vision community through a
refereed publication, and

3) to evaluate only algorithms for which code was read-
ily available.

Based on these criteria, algorithms by Canny [9], Nalwa [8],
Iverson [11], Bergholm [43], and Rothwell [44] were selected.
The choice to include only five algorithms was made to keep
the experimental comparisons within a reasonable size.

Whenever possible, an implementation of an algorithm
was obtained from the authors who developed it. Ideally,
our objective was not to modify the code we received. Un-
fortunately, this was necessary in several cases. Some rea-
sons for doing this were that several algorithms did not
output edges in a binary image format and we decided to
add non-maximal suppression or hysteresis thresholding.
Every program, except the Bergholm edge focusing pro-
gram, was modified to a small degree. Strictly speaking, the
results of the performance evaluation should be attributed
to the implementation of the algorithm that was used. We
take full responsibility for all of the changes we made to the
algorithms.

4.1 Canny Algorithm
The Canny edge detection algorithm is considered a
“standard method” used by many researchers. Canny edge
detection uses linear filtering with a Gaussian kernel to
smooth noise and then computes the edge strength and
direction for each pixel in the smoothed image. This is done
by differentiating the image in two orthogonal directions
and computing the gradient magnitude as the root sum of
squares of the derivatives. The gradient direction is com-
puted using the arctangent of the ratio of the derivatives.
Candidate edge pixels are identified as the pixels that sur-
vive a thinning process called nonmaximal suppression. In
this process, the edge strength of each candidate edge pixel
is set to zero if its edge strength is not larger than the edge
strength of the two adjacent pixels in the gradient direction.
Thresholding is then done on the thinned edge magnitude
image using hysteresis. In hysteresis, two edge strength
thresholds are used. All candidate edge pixels below the
lower threshold are labeled as nonedges and all pixels
above the low threshold that can be connected to any pixel
above the high threshold through a chain of edge pixels are
labeled as edge pixels. The implementation of the Canny
edge detector used was originally written at the University
of Michigan. Parts of the code were rewritten to have better
structure and to allow the processing of nonsquare images.
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The Canny edge detector allows the user to specify three
parameters. The first is sigma, the standard deviation of the
Gaussian filter specified in pixels. The second parameter,
low, and the third parameter, high, are, respectively, the low
and high hysteresis thresholds. The high threshold is a
fraction of the graient magnitude and the low threshold is a
fraction of the calculated high threshold value.

4.2 Nalwa Algorithm
The Nalwa edge detection algorithm represents the method
of edge detection by surface fitting. It differs from the linear

filtering approach used in the Canny edge detector because
the derivative of the image is not computed. Instead, hy-
perbolic tangent and quadratic functions are fit to the im-
age intensities in a 5 � 5 pixel window that is scanned
across the image. If the hyperbolic tangent fit has a lower
error than the quadratic fit, then a candidate edge is
marked. The contrasts of the candidate edge pixels are then
thresholded to reduce the number of spurious edges.

The implementation of the algorithm was obtained from
Vic Nalwa. The output format was originally a text file that

Fig. 2. The images that were used to evaluate the edge detectors. (continued on next page)
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indicated the subpixel location of each edgel (edge element)
as well as the edge contrast and orientation. To use our
evaluation methodology, it was necessary to modify the al-
gorithm to produce an edge image by plotting the edge
points on a grid with the dimensions of the image. The edge
images produced by the modified algorithm were in some
cases more than one pixel thick. To take care of this, the
nonmaximal suppression algorithm from the Canny edge
detector was added to thin the edges. Twice the edge contrast
was used in place of the gradient magnitude in this process
to reduce the noise from quantization. Hysteresis threshold-
ing was added following the suggestion of Vic Nalwa.

The original Nalwa edge detector allows the user to
specify one parameter, but the modified program required
the user to specify three parameters. The range used for the
blur parameter was 0.6 to 1.5 (determined from a recom-
mendation from Vic Nalwa). The values of the hysteresis
thresholds, low and high, were obtained through experi-
mentation.

4.3 Iverson Algorithm
The Iverson logical/linear edge detector was included in
the evaluation because it presented a method to improve
the performance of a linear edge detection algorithm by

Fig. 2. (continued)
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including logical checks for the existence of an edge. The
motivation for doing this was to reduce the number of false
positive edges detected with linear edge detectors without
losing sensitivity in detecting true edges.

The edge detector implementation (version 1.0.3) was
down loaded from an FTP site (ftp://ftp.cim.mcgill.
ca/pub/people/leei/loglin.tar.gz). The program itself
was not modified at all, but post processing was applied to
the output. This was done because the algorithm outputs a
postscript file of edge segments plotted on a grid with a
resolution higher than the original image. Since we re-
quired all of the algorithms to represent the edges as a bi-
nary image with the dimensions of the original image, each
edgel was plotted as a pixel in this image. Since the algo-
rithm initially allowed for detecting multiple edgels at the
same position with different orientations, the edge direction
was taken to be the direction with the largest associated
edge strength. Nonmaximal suppression was added to en-
sure that thin edges were produced. Hysteresis was added
to allow greater flexibility for tuning the algorithm to each
image. This edge detector is capable of separately detecting
step edges and both positive and negative contrast lines.
We search for only step edges in this evaluation.

The modified Iverson-Zucker algorithm allowed the user
to specify three parameters. Default values were specified
for the degree and the threshold. The direction parameter
controls the number of directions considered to detect
edges. This parameter was set at four values between four
and ten. The low and high hysteresis values were obtained
through experimentation. To consider the case of no hys-
teresis thresholding, we included the choices of zero low
and high thresholds in the parameter set.

4.4 Bergholm Algorithm
The Bergholm edge focusing algorithm was selected be-
cause it represented an approach that used a scale space
representation to try to find edges that are “significant.”
Edges are first detected at a coarse resolution. This is done
by blurring the image with a Gaussian filter, and finding
the pixels that have gradient that is both a local maximum
and that is greater than a threshold value. The algorithm
then “focuses” these edges by tracking them through scale
space to finer resolutions (images that were smoothed with
small Gaussian filters). Edges at coarse scales were used to
guide the search for edge pixels at successive fine scales.

The implementation of the Bergholm detector was ob-
tained as part of the Candela image processing package
obtained by anonymous FTP (from ftp.bion.kth.se/
cvap/2.1). The program was not changed at all. The edge
images were remapped to display the edges in black on a
white background.

The algorithm required three parameters to be set; the
starting sigma, the ending sigma and an edge threshold. The
range of values for the starting sigma and the ending sigma
were 5 to 0.5. This is consistent with the parameter values
in the journal paper that presented the algorithm [43]. The
range of values for the threshold was 5 to 20 and was deter-
mined through experimentation.

4.5 Rothwell Algorithm
The last algorithm included in the experiment was unique
in that it employed dynamic thresholding that varied the
edge strength threshold across the image. Overall, the algo-
rithm was very similar to the Canny algorithm because
Gaussian smoothing was followed by differentiation. The
difference between the two algorithms was that the Roth-
well algorithm does edge thinning as a post edge detection
process and that dynamic thresholding is used instead of
hysteresis. The reason for not using nonmaximal suppres-
sion to do the thinning was a claim that it fails at the junc-
tions in images because of the smoothing process. The rea-
son for not using hysteresis was a belief that the strength of
an edge has no particular relevance to its value for higher-
level vision processing (such as object recognition). The
implementation of this algorithm was performed by com-
bining pieces of the Canny edge detector code and pieces of
C++ code obtained from the authors of the paper [44].

This algorithm required that the user input three pa-
rameters. These are the smoothing amount sigma, the edge
threshold and a parameter alpha that adapts the edge thresh-
old to increase the detection of pixels that are near other
edges. The range of values for sigma was 0.5 to 2.0 pixels.
The value of alpha was set between 0.8 and 0.95, to include
the value of 0.9 used in [44].

5 PARAMETER SELECTION

5.1 Overview
Selecting the input parameters of each algorithm is a critical
step in edge detector performance evaluation because the
resulting edge quality varies greatly with the choice of pa-
rameters. In this evaluation, the input parameters were se-
lected to maximize the quality of the edges for the purpose
of recognizing an object in the image. We devoted equal
effort in searching the parameter space for each algorithm.
While this method does not guarantee that the optimal in-
put parameter set was identified,1 it does avoid biasing the
results toward any of the algorithms.

Parameter selection involved multiple steps. We began
by identifying a large, fixed number of parameter combi-
nations. We then had an individual, the parameter pre-
screener select a subset of parameters. This subset of pa-
rameters was then reduced to the final parameter set using
visual ratings collected in an experiment.

5.2 Initial Parameter Specification
The initial parameter specification involved selecting 64 sets of
parameters that were consistent with the parameters used by
the respective authors. The objective of this step was to select a
range of parameters that samples the space broadly enough
for each parameter without sampling it too coarsely. These
parameters sets were then used to generate 64 edge images.

The initial 64 Canny parameters were all combinations of
sigma, low, and high, where sigma °�{0.60, 1.20, 1.80, 2.40}, low
°�{0.20, 0.30, 0.40, 0.50}, and high °�{0.60, 0.70, 0.80, 0.90}. The
initial 64 Nalwa parameters were all combinations of blur,
low, and high, where blur °�{0.60, 0.90, 1.20, 1.50}, low °�{0.05,

1. There is currently no accepted method that will guarantee finding the
optimal input parameters without ground truth.
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0.10, 0.15, 0.20}, and high °�{0.15, 0.30, 0.45, 0.60}. The initial 64
Iverson parameters were all combinations of directions, low,
and high, where directions °�{4, 6, 8, 10}, low °�{0.00, 0.20, 0.40,
0.60}, and high °� {0.05, 0.30, 0.55, 0.80}. Note: The combina-
tions containing both low = 0.60 and high = 0.80 were replaced
with low = 0.00 and high = 0.00. The initial 64 Bergholm pa-
rameters were all combinations of start sigma, end sigma, and
threshold, where start sigma °� {2.0, 3.0, 4.0, 5.0}, end sigma
°{0.5, 1.0, 1.5, 2.0}, and threshold °{5.0, 10.0, 15.0, 20.0}. The
initial 64 Rothwell parameters were all combinations of sigma,
threshold, and alpha, where sigma °�{0.50, 1.00, 1.50, 2.00}, thresh-
old °�{3.0, 8.0, 13.0, 18.0}, and alpha °�{0.80, 0.85, 0.90, 0.95}.

5.3 Parameter Prescreening
5.3.1 Methodology
A person, the parameter prescreener, viewed the 64 edge
images and selected the best five for each gray-scale image.
After doing this, the results were input to a greedy search
algorithm that selected a subset of 12 of the 64 parameter
combinations to use in a final parameter selection experi-
ment. The objective of the greedy search was to find a sub-
set of the parameters that produced at least one good edge
image for each gray-scale image. More specifically, at each
step, the search maximized the minimum number of im-
ages that were selected by the parameter prescreener across
the set of gray-scale images.

5.3.2 Results
The parameter prescreening process reduced the 64 pa-
rameter sets to 12 parameter sets for each algorithm. The
results are listed in Table 3.

5.4 Parameter Selection Experiments
5.4.1 Methodology
One parameter selection experiment was conducted for
each edge detector. In these experiments, participants
evaluated sets of edge images created from 28 gray-scale
images. Each set consisted of the gray-scale image and 12
edge images created from it by the same algorithm using
different input parameters. Nine students from a graduate
computer vision class volunteered to participate in the ex-
periments and gave their informed consent.

The participants were verbally instructed to rate each
edge image according to how well they thought they could
recognize the central object from the edges. The ratings
were recorded on a scale of one to seven. A score of seven
indicated that the “Information allows for easy, quick and
accurate recognition of the object,” and a one indicated that
there was “No coherent information from which to recog-
nize the object.” Intermediate numbers indicated interme-
diate ratings. An example edge image with the rating scale
can be seen in Fig. 3.

TABLE 3
THE PARAMETERS THAT WERE USED IN THE PARAMETER SELECTION EXPERIMENT

Canny Edge Detector
Combination Number

Parameter 1 2 3 4 5 6 7 8 9 10 11 12
sigma 1.2 1.8 0.6 1.2 0.6 1.2 1.2 1.2 2.4 0.6 1.2 1.8
low 0.4 0.2 0.3 0.2 0.5 0.3 0.4 0.2 0.2 0.3 0.4 0.3
high 0.8 0.7 0.9 0.6 0.9 0.8 0.6 0.8 0.6 0.8 0.9 0.9

Nalwa Edge Detector
Combination Number

Parameter 1 2 3 4 5 6 7 8 9 10 11 12
blur 1.50 1.50 0.60 1.20 1.50 0.60 1.50 1.20 1.20 1.50 0.60 1.50
low 0.10 0.20 0.15 0.10 0.15 0.10 0.15 0.05 0.05 0.05 0.05 0.05
high 0.60 0.60 0.60 0.60 0.15 0.60 0.45 0.15 0.30 0.45 0.30 0.15

Iverson Edge Detector
Combination Number

Parameter 1 2 3 4 5 6 7 8 9 10 11 12
directions 8 8 8 4 8 8 4 6 8 8 6 10
low 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.00 0.00 0.20 0.00 0.00
high 0.55 0.05 0.00 0.55 0.05 0.30 0.05 0.00 0.30 0.55 0.30 0.05

Bergholm Edge Detector
Combination Number

Parameter 1 2 3 4 5 6 7 8 9 10 11 12
start sigma 2.0 2.0 3.0 3.0 2.0 2.0 3.0 4.0 4.0 3.0 4.0 5.0
end sigma 2.0 1.5 1.5 2.0 1.0 2.0 2.0 1.5 2.0 2.0 1.5 1.5
threshold 20 15 10 20 15 15 5 20 10 15 5 10

Rothwell Edge Detector
Combination Number

Parameter 1 2 3 4 5 6 7 8 9 10 11 12
sigma 1.0 1.0 1.0 1.5 1.0 1.5 1.5 2.0 0.5 1.0 1.0 1.5
threshold 8 8 13 8 13 3 3 3 18 18 18 13
alpha 0.90 0.95 0.85 0.85 0.80 0.90 0.80 0.95 0.80 0.80 0.85 0.80

These tables list 12 parameter combinations that were chosen for each edge detector. These parameters were obtained by evaluating 64 parameters combinations
for each picture and then selecting a subset of 12 parameter combinations that provided at least one good edge image for each picture.
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Each participant had a table on which to spread out the
evaluation sheets for each image. During the experiment,
they were allowed to rearrange the sheets to allow for side
by side comparisons between edge images. This also al-
lowed the participants to sort the images by edge quality if
they wanted to.

There was no time limit for the experiments. Individual
times varied between one and two hours. The experiment
was repeated for each of the edge detectors by the same nine
students with two to three weeks between each experiment.

5.4.2 Results
Fig. 4 illustrates the rating scale using some of the ratings
collected in the experiment. It shows the 12 edge images
generated by the Canny algorithm from the tire image us-
ing the parameters in Table 3. Below each image, the aver-
age rating calculated from the nine participants’ responses
is shown. It is easy to see the that the ratings track the qual-
ity of the edge images.

Consistency of the Participants’ Ratings. To establish the
validity of comparing mean ratings, it is important to
know whether the ratings were consistent across the par-
ticipants. This was estimated using one form of the Intra-
class Correlation Coefficient [45]. The ICC(3, k) form of
this statistic is appropriate for estimating this because it
measures the consistency in the participants’ mean rating
of a particular parameter settings edge image to the over-
all mean of the edge images for that edge detector. The
ICC(3, k) is defined as:

ICC 3, k
BMS EMS

BMS0 5  
�

where BMS is the mean square value of the rating between
targets, EMS is the total mean square error, and k is the num-
ber of judges. The values of the ICC can range from zero (no
consistency) to one (complete consistency). The SAS statis-
tical package was used to compute the components of the
ICC statistic.

Fig. 3. An example evaluation sheet. The label in the upper left corner is a coded identifier for this image. The edges appear in black on a white
background. The rating scale appeared on each evaluation sheet.



HEATH ET AL.:  A ROBUST VISUAL METHOD FOR ASSESSING THE RELATIVE PERFORMANCE OF EDGE DETECTION ALGORITHMS 1347

The ICC results in Table 4 show that there was a strong
agreement between the participants responses. This means
that the participants rated the edge images in a similar
fashion and indicates that there is a concept of “edge good-
ness” that the subjects share. This was an important result
because it validated the ability of human subjects to evalu-
ate edge images.

TABLE 4
THE CORRELATION IN RATINGS IN EACH OF THE

PARAMETER SELECTION EXPERIMENTS

Detector 20 Image ICC(3, 9) 28 Image ICC(3, 9)
Canny 0.913 0.917
Nalwa 0.923 0.921
Iverson 0.893 0.895

Bergholm 0.908 0.897
Rothwell 0.926 0.925

Fig. 4. A sample of the rating collected in the parameter selection experiment. These are the 12 edge images generated from the tire image by the
Canny edge detector. The mean below each image is the average of the ratings from the nine participants.
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The Parameters Selected for the Evaluation. The ratings
were used to determine the best parameter sets using two
different criteria.2 The best single overall parameter set,
termed the fixed parameters, was identified by averaging the
ratings across the subjects, averaging these results across
images, and finding the parameter set with the largest av-
erage. When two or more parameter sets had nearly the
same average, the number of images that each parameter
set performed the best on was considered in making the
decision of fixed parameters. The best parameter set for
each individual image, termed the adapted parameters, was
also found. This was done by averaging the ratings across
subjects and identifying the parameters that had the largest
average rating for each image. When more than one pa-
rameter set had the same average on an individual image,
the parameter set that had the larger average across all of
the images was selected. Thus, two types of parameter se-
lections were made for each edge detector. Note that the
parameters could actually have the same values because the
best fixed parameters could be the same as the best adapted
parameters for some image.

The adapted parameters are listed for each image in Ta-
ble 5. The best fixed parameters for each edge detector are:
Canny (0.60 0.30 0.90), Nalwa (1.50 0.20 0.60), Iverson (8
0.00 0.00), Bergholm (2.0 1.0 15), and Rothwell (0.5 18 0.80).

2. Note that only the 20 images that had been categorized by image type
were used in determining the best parameters. This was done because the
additional eight images (from our first experiment in [6]) did not fit equally
into the four categories. Therefore, if they were used, they may have biased
the performance in favor of the more prevalent image type.

Consistency Between the Prescreening and Parameter
Selection Results. The multistep process used to find pa-
rameter combinations for each algorithm raises the question
of the consistency between the preference of the parameter
prescreener and the preferences of the participants in the
parameter selection experiment. The parameter prescreen-
ing process reduced the number of parameter combinations
from 64 to 12 to limit the scope of the parameter selection
experiment. The consistency between the prescreener pref-
erences and the subsequent parameter selection was esti-
mated by calculating the relative score of the edge images
selected by the parameter prescreener to the edge images
he did not select. This was done for each image and then
the results were averaged across the 28 images.

For each picture, the maximum and minimum average
ratings, MAX and MIN were determined, as was the maxi-
mum average rating of the images selected by the parame-
ter prescreener, P. A relative rating of each edge image se-
lected by the parameter prescreener was then computed as

P MIN
MAX MIN

�

�

. The relative ratings were then averaged across the
28 images and are listed for each edge detector in Table 6.

These results show that the edge images that were
rated highly by the parameter prescreener were also rated
highly by the participants in the parameter selection ex-
periments. Given the noise in participant ratings as ex-
pressed by the participant rating correlations in Table 4,
the relative ratings of 84.2 percent to 92.0 percent for these
images are good.

TABLE 5
THE BEST ADAPTED PARAMETERS LISTED FOR EACH IMAGE

Edge Detection Algorithm
Image Canny Nalwa Iverson Bergholm Rothwell
golf cart 0.60 0.30 0.90 1.50 0.10 0.60 8 0.20 0.55 2.0 2.0 20 0.5 18 0.80
pitcher 0.60 0.30 0.80 0.60 0.15 0.60 4 0.00 0.05 2.0 1.5 15 0.5 18 0.80
stapler 0.60 0.30 0.90 1.50 0.20 0.60 8 0.20 0.30 5.0 1.5 10 1.0 8 0.95
mailbox 1.20 0.40 0.60 0.60 0.15 0.60 8 0.00 0.30 2.0 1.0 15 1.0 8 0.90
pillow 0.60 0.30 0.80 1.50 0.20 0.60 8 0.20 0.30 3.0 2.0 15 0.5 18 0.80
brush 0.60 0.30 0.90 0.60 0.15 0.60 8 0.00 0.55 2.0 1.5 15 0.5 18 0.80

shopping cart 0.60 0.30 0.90 1.50 0.20 0.60 8 0.20 0.55 2.0 2.0 20 1.0 18 0.80
tire 1.20 0.20 0.60 1.20 0.05 0.15 8 0.00 0.00 3.0 2.0 5 0.5 18 0.80

grater 0.60 0.30 0.90 1.50 0.10 0.60 8 0.20 0.30 2.0 1.0 15 0.5 18 0.80
picnic basket 1.20 0.40 0.60 0.60 0.05 0.30 6 0.00 0.00 3.0 1.5 10 0.5 18 0.80

orange 1.20 0.40 0.80 1.20 0.10 0.60 8 0.00 0.00 3.0 1.5 10 1.0 8 0.90
banana 0.60 0.30 0.80 1.20 0.05 0.30 8 0.00 0.00 4.0 1.5 5 1.5 3 0.90

egg 1.20 0.40 0.80 1.20 0.10 0.60 4 0.00 0.05 4.0 1.5 5 1.5 3 0.90
elephant 0.60 0.30 0.90 1.50 0.20 0.60 8 0.00 0.00 2.0 2.0 20 1.0 13 0.80

pond 0.60 0.30 0.80 0.60 0.10 0.60 8 0.00 0.55 2.0 1.0 15 0.5 18 0.80
pine cone 1.20 0.40 0.60 1.50 0.10 0.60 8 0.00 0.30 3.0 2.0 20 0.5 18 0.80

feather 0.60 0.30 0.80 1.20 0.05 0.30 8 0.00 0.30 2.0 1.0 15 0.5 18 0.80
beehive 1.80 0.30 0.90 1.50 0.20 0.60 8 0.00 0.00 5.0 1.5 10 1.0 13 0.80

turtle 0.60 0.50 0.90 0.60 0.15 0.60 8 0.00 0.30 2.0 1.0 15 1.0 8 0.90
tiger 0.60 0.50 0.90 1.50 0.20 0.60 8 0.00 0.00 2.0 2.0 20 0.5 18 0.80

briefcase 1.20 0.20 0.80 1.50 0.05 0.45 8 0.00 0.05 2.0 1.0 15 0.5 18 0.80
trash can 1.80 0.20 0.70 1.50 0.05 0.45 6 0.00 0.00 3.0 1.5 10 1.0 8 0.95

video camera 1.80 0.20 0.70 1.50 0.10 0.60 8 0.00 0.00 3.0 1.5 10 1.0 8 0.90
coffee maker 1.20 0.30 0.80 1.50 0.10 0.60 8 0.20 0.05 2.0 1.0 15 0.5 18 0.80

flower 0.60 0.30 0.90 1.50 0.10 0.60 8 0.20 0.30 2.0 1.0 15 0.5 18 0.80
airplane 0.60 0.50 0.90 1.50 0.20 0.60 8 0.00 0.55 4.0 1.5 20 1.0 18 0.80

traffic cone 0.60 0.30 0.90 1.20 0.10 0.60 8 0.00 0.30 2.0 2.0 20 0.5 18 0.80
stairs 0.60 0.30 0.80 1.20 0.10 0.60 8 0.20 0.55 2.0 2.0 20 0.5 18 0.80

The Canny parameters are sigma, low, and high. The Nalwa parameters are blur, low, and high. The Iverson parameters are directions, low, and high. The
Bergholm parameters are start sigma, end sigma, and threshold. The Rothwell parameters are sigma, threshold, and alpha.



HEATH ET AL.:  A ROBUST VISUAL METHOD FOR ASSESSING THE RELATIVE PERFORMANCE OF EDGE DETECTION ALGORITHMS 1349

TABLE 6
SUBJECTS RATINGS OF INITIALLY SELECTED PARAMETERS

FOR EACH DETECTOR

Detector Relative Rating
Canny 92.0 percent
Nalwa 84.2 percent
Iverson 88.4 percent

Bergholm 91.9 percent
Rothwell 91.2 percent

6 EDGE DETECTOR EVALUATION

6.1 Methodology
In the edge detector comparison experiment, edge images
produced by all of the algorithms were evaluated. The best
fixed and adapted parameters, as identified in the parame-
ter selection experiments, were used to generate the edge
images. Since there were 28 gray-scale images and five edge
detection algorithms with two parameter settings each,
there were 280 edge images to evaluate. Sixteen people
from the computer vision lab at the University of South
Florida volunteered to participate in the experiment. A
larger number of participants was used in this experiment
than had been used in the parameter selection experiments
because the process of selecting the best parameters for each
algorithm reduced the range in quality of the edge images
and it was thought that more observations might be needed
to statistically differentiate between the edge images.

The experiment was conducted in a manner similar to
the parameter selection experiments were. To remove the
potential for bias towards any algorithm, the evaluation
sheets were labeled with codes that did not identify the
algorithm. To remove other potential sources of bias for any
algorithm, the order of the edge images was randomized
separately for each subject.

All 16 participants did the evaluation on the same day.
The average time taken to evaluate all of the images was
around one and a half hours.

The consistency of the ratings was examined and then the
ratings were analyzed to answer three questions. These are:

1) Does the performance of the algorithms improve sub-
stantially when the parameters are adapted for each
image rather than held fixed for a set of images?

2) What is the relative performance of the edge detection
algorithms?

3) Does the measure of the relative performance of the
edge detectors depend on the selection of images
used in the evaluation?

6.2 Results
6.2.1 Correlation Between Participant Responses
The same interclass correlation measure that was applied to
the parameter setting data above was applied to the data
collected in this experiment. Again, it is important to have a
high correlation between participants because the ratings
from different participants will be used as multiple obser-
vations in the data analysis. Table 7 lists the interclass cor-
relations for the 20 and 28 image results. The correlation is
strong, indicating a good agreement between the partici-
pants’ ratings.

TABLE 7
THE INTERCLASS CORRELATION COEFFICIENT FOR THE EDGE

DETECTOR COMPARISON EXPERIMENT

Detectors 20 Image ICC(3,16) 28 Image ICC(3,16)
All 0.939 0.928

6.2.2 Analysis of the Edge Detector Ratings
Before presenting the numerical results for the evaluation,
selected results are presented to visually calibrate the
reader to the numerical scale of edge ratings. The lowest
and the highest ratings (averaged across participants) for
any single image in the evaluation are displayed in Fig. 5.

          (a) Pond (mean = 1.44)              (b) Basket image (mean = 6.31)

Fig. 5. The lowest and highest rated edge images. Image (a) was pro-
duced by the Nalwa edge detector with input parameters blur = 1.50,
low = 0.20, and high = 0.60. Image (b) was produced by the Rothwell
edge detector with input parameters sigma = 0.50, low = 18.0, and
alpha = 0.80.

The correlation between the participant responses re-
ported in Section 6.2.1 showed a strong agreement between
the relative ratings of participants. Of course, this agree-
ment was not perfect. Fig. 6 shows the two edge images
that had the lowest, and the highest, variance of the 16 par-
ticipant ratings.

(a) Banana (mean = 1.56, std = 0.75)  (b) Pond (mean = 2.63, std = 2.00)

Fig. 6. Edge images that had the lowest and highest variance in the
ratings. Image (a) was the image with the lowest variance in ratings
and was produced by the Rothwell edge detector with input parame-
ters sigma = 0.50, low = 18.0, and alpha = 0.80. Image (b) was edge
image with the highest variance in ratings and was produced by the
Canny edge detector with input parameters sigma = 0.60, low = 0.30,
and high = 0.90.

To help further understand the range of the scale, the five
edge images that had the smallest range of average ratings
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are displayed in Fig. 7, and the five edge images that had the
largest range of average ratings are displayed in Fig. 8.

Does the performance of the edge detectors depend on whether
the parameters are held constant for all of the images or are
adapted to each image?

The edge images produced with the adapted parameters
were rated 4.60 on average and the edge images produced
with the fixed parameters were rated 4.15 on average. Table 8

shows results from an analysis of variance3 computed using
a model that contains the parameter combination term in
each source of variation measured. The result in the first
row indicates that there is a significant difference (Pr > F =
0.001) in the ratings of the edge images that were generated
with fixed and adapted parameters. Thus, the edge detectors

3. Analysis of variance is a general statistical method for analyzing ex-
perimental data. Many texts on statistics describe analysis of variance
methods. For example, see [46] for an introduction to the subject.

                                                (a) Nalwa (mean = 5.31)        (b) Rothwell (mean = 5.38)       (c) Iverson (mean = 5.56)

                                                                    (d) Bergholm (mean = 5.69)        (e) Canny (mean = 6.13)

Fig. 7. Edge images that had the smallest range in average ratings. Image (a) was produced by the Nalwa edge detector with input parameters
blur = 1.50, low = 0.20, and high = 0.60. Image (b) was produced by the Rothwell edge detector with input parameters sigma = 0.50, low = 18.0,
and alpha = 0.80. Image (c) was produced by the Iverson edge detector with input parameters direction = 8, low = 0.000, and high = 0.00. Image
(d) was produced by the Bergholm edge detector with input parameters starting sigma = 2.00, ending sigma = 1.00, and threshold = 15. Image (e)
was produced by the Canny edge detector with input parameters sigma = 0.60, low = 0.30, and high = 0.90.

                                              (a) Canny (mean = 3.06)          (b) Nalwa (mean = 3.63)          (c) Iverson (mean = 5.63)

                                                                    (d) Bergholm (mean = 5.81)      (e) Rothwell (mean = 6.25)

Fig. 8. Edge images that had the largest range in average ratings. Image (a) was produced by the Canny edge detector with input parameters
sigma = 0.60, low = 0.30, and high = 0.90. Image (b) was produced by the Nalwa edge detector with input parameters blur = 1.50, low = 0.20, and
high = 0.60. Image (c) was produced by the Iverson edge detector with input parameters direction = 8, low = 0.000, and high = 0.00. Image (d)
was produced by the Bergholm edge detector with input parameters starting sigma = 2.00, ending sigma = 1.00, and threshold = 15. Image (e)
was produced by the Rothwell edge detector with input parameters sigma = 0.50, low = 18.0, and alpha = 0.80.
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performed significantly better with adapted rather than
fixed parameters. The table also indicates that all of the
interactions between the factors are significant. This im-
plies that the size of the difference in the ratings obtained
with the fixed and adapted parameters varies with the
other factors.

What is the relative performance of the five edge detection
algorithms?

The data collected in this experiment were split into two
pieces to answer this question. One subset contained the
data for the adapted parameters and the other contained
the data for the fixed parameters. A separate analysis was
done on each of these data sets because the performance of
an edge detector should be evaluated using either adaptive
or fixed parameters, but not both.

Statistically significant differences in the mean perform-
ance of the algorithms were determined using the Bonfer-
roni test [47]. This test applied individual statistical tests for
differences in the mean performance between each pair of
edge detection algorithms using a one-way analysis of vari-
ance. Ten separate analyses of variance were done. Since
the same data was used in multiple tests whose results
were to be compared, the level of significance was adjusted
from 0.05 to 0.005 for each test. This was done so the fam-
ily-wise error was approximately 0.05. The analysis was the
same for the adapted and fixed parameter data.

Results of the Adapted Parameter Comparison. Table 9
lists the results of the comparison of edge detectors using
the parameters that were optimized and set individually for
each of the 20 images. The table lists the mean performance
of each edge detector and the significant differences in the
mean performance between the algorithms. Because the
significant differences account for the distribution of scores
for each edge detector, they are more accurate measures of
the true difference in edge detector performance than a
simple difference in the means. The statistically significant
differences in the performance of the algorithms indicate

that the Rothwell, Bergholm, and Canny edge detectors all
performed significantly better than both the Iverson and
Nalwa edge detectors.

TABLE 9
RELATIVE EDGE DETECTOR PERFORMANCE

USING ADAPTED PARAMETERS

Edge Detector Mean Significant Differences
Canny (C) 4.80
Bergholm (B) 4.78
Rothwell (R) 4.76 (I, N) < (R, B, C)
Nalwa (N) 4.43
Iverson (I) 4.26

Although the Canny edge detector performed signifi-
cantly better than the Iverson edge detector on average, the
performance can be quite different on any particular image.
Fig. 9 shows the image where the Canny edge detector per-
formed better than the Iverson edge detector by the largest
amount and an image where the Iverson edge detector out-
performed the Canny edge detector by the largest amount.

Results of the Fixed Parameter Comparison. Table 10 lists
the results of the comparison of edge detectors using the
parameters that were optimized and fixed for the set of 20
images. The statistically significant differences reveal that
the Bergholm edge detector outperformed both the Canny
and Nalwa edge detectors. The Iverson and Rothwell edge
detectors did not perform significantly differently from any
of the edge detectors in the pairwise tests.

TABLE 10
RELATIVE EDGE DETECTOR PERFORMANCE

USING FIXED PARAMETERS

Edge Detector Mean Significant Differences
Bergholm (B) 4.38
Iverson (I) 4.24
Rothwell (R) 4.21 (C, N) < B
Nalwa (N) 3.97
Canny (C) 3.96

TABLE 8
ANOVA RESULTS FOR A TEST OF THE SIGNIFICANCE OF THE EFFECT

OF FIXING THE INPUT PARAMETERS ACROSS ALL IMAGES
OR ADAPTING THEM FOR EACH IMAGE

Source DF ANOVA
SS

Mean
Square

Pr > F

Parameter combination 1 163.81 163.81 0.0001
Parameter combination �
Edge detector 8 120.06 15.01 0.0001
Parameter combination �
Man-made/Natural 2 1,095.70 547.85 0.0001
Parameter combination �
Textured/Nontextured 2 24.35 12.17 0.0052
Parameter combination �
Edge detector x 8 41.07 5.14 0.0230
Man-made/Natural
Parameter combination �
Edge detector � 8 165.06 20.63 0.0001
Textured/Nontextured
Parameter combination �
Edge detector �
Man-made/Natural � 10 115.02 11.50 0.0001
Textured/Nontextured
Error 3,160 7,209.93 2.31
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As with the adapted parameters, the performance of the
algorithms depends on the image when fixed parameters are
used. This is illustrated in Fig. 10. The Bergholm edge detec-
tor performed better than the Canny edge detector on the
basket image, whereas the Canny edge detector outperformed
the Bergholm edge detector on the shopping cart image.

How does the measured relative performance of the edge detec-
tors depend on the selection of images used in the evaluation?

An analysis of variance was done on the adapted pa-
rameter data to examine the interaction between the per-
formance of the edge detectors and the image type, man-
made, natural, textured, and nontextured. Results from
the analysis of variance in Table 11 show that there are
also significant interactions between the edge detector
performance and the image type (Pr > F <= 0.0023 for all
the tests) in the adapted parameter data. This means that
the size of the difference in the performance of the edge
detectors changes with the type of images used to com-
pare the algorithms.

Because there was an interaction between the perform-
ance of the algorithms and the image type, the relative
performance of the algorithms was calculated separately
for each image type. The results are displayed in Table 12.
The table shows that the relative ranking of the edge de-
tectors in each image category is consistent; no two algo-
rithms change significantly in relative performance to
each other.

The low performance of the Iverson algorithm on the
Natural, Nontextured images stands out. A study of the
results shows that the ratings are low across four of the
five images in this category. This means that the low
overall performance is not due to a “problem image” but
is due to the whole set of images in this category. Cur-
rently, we are not able to conjecture a plausible explana-
tion for this result.

      (a) Bergholm (mean = 5.81)              (b) Canny (mean = 3.06)

     (c) Bergholm (mean = 4.56)                (d) Canny (mean = 5.31)

Fig. 10. The fixed parameter edge detector evaluations are image
dependent. In the basket image, the edges detected with the Bergholm
algorithm (a) were rated higher than the edges detected with the
Canny algorithm (b). Image (a) was produced with input parameters
starting sigma = 2.0, ending sigma = 1.0, and threshold = 15. Image (b)
was produced with input parameters sigma = 0.60, low = 0.30, and
high = 0.90. In the shopping cart image, the edges detected with the
Bergholm algorithm (c) were rated lower than the edges detected with
the Canny algorithm (d). Image (c) was produced with input parame-
ters starting sigma = 2.0, ending sigma = 1.0, and threshold = 15. Im-
age (d) was produced with input parameters sigma = 0.60, low = 0.30,
and high = 0.90.

TABLE 11
ANOVA RESULTS FOR THE RATINGS OBTAINED FOR USING

ADAPTED PARAMETERS

Source DF ANOVA
SS

Mean
Square

Pr > F

Edge detector 4 77.27 19.32 0.0001
Edge detector �
Man-made/Natural 5 414.44 82.88 0.0001
Edge detector �
Textured/Nontextured 5 67.12 13.42 0.0001
Edge detector �
Man-made/Natural � 5 40.99 8.20 0.0023
Textured/Nontextured
Error 1,580 3,476.95 2.20

       (a) Canny (mean = 4.81)                   (b) Iverson (mean = 1.81)

      (c) Canny (mean = 4.19)                    (d) Iverson (mean = 5.50)

Fig. 9. The adapted parameter edge detector evaluations are image
dependent. In the banana image, the edges detected with the Canny
algorithm (a) were rated higher than the edges detected with the Iver-
son algorithm (b). Image (a) was produced with input parameters
sigma = 0.60, low = 0.30, and high = 0.90. Image (b) was produced
with input parameters direction = 8, low = 0.000, and high = 0.000. In
the elephant image, the edges detected with the Canny algorithm (c)
were rated lower than the edges detected with the Iverson algorithm
(d). Image (c) was produced with input parameters sigma = 0.60, low =
0.30, and high = 0.90. Image (d) was produced with input parameters
direction = 8, low = 0.000, and high = 0.000.
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TABLE 12
RELATIVE PERFORMANCE OF THE EDGE DETECTORS ON

SUBSETS OF THE ADAPTED PARAMETER IMAGES

Man-made Nontextured
Edge Mean Significant
Detector Difference
Canny (C) 5.54
Bergholm (B) 5.20
Rothwell (R) 5.15 I < C
Nalwa (N) 5.06
Iverson (I) 4.85

Man-made Textured
Edge Mean Significant
Detector Difference
Bergholm (B) 5.38
Rothwell (R) 5.33
Canny (C) 5.03 N < (R, B)
Iverson (I) 4.95
Nalwa (N) 4.59

Natural Nontextured
Edge Mean Significant
Detector Difference
Nalwa (N) 4.31
Rothwell (R) 4.24
Canny (C) 4.19 I < (B, C, R, N)
Bergholm (B) 4.13
Iverson (I) 2.96

Natural Textured
Edge Mean Significant
Detector Difference
Canny (C) 4.44
Bergholm (B) 4.41
Rothwell (R) 4.31 NONE
Iverson (I) 4.26
Nalwa (N) 3.76

A similar analysis was done on the fixed parameter data.
Table 13 shows results from an analysis of variance used to
examine the significance of the interactions between the edge
detector and the image type. The results indicate that there is
a significant difference in the average ratings of the edge de-
tectors (Pr > F = 0.0015) and that there are significant interac-
tions between the edge detector and the image type (Pr > F
<= 0.0001 for all the tests). This means that the size of the
difference in the performance of the edge detectors changes
with the type of images used to compare the algorithms.

TABLE 13
ANOVA RESULTS FOR THE RATINGS OBTAINED FOR USING

FIXED PARAMETERS

Source DF ANOVA
SS

Mean
Square

Pr > F

Edge detector 4 42.79 10.70 0.0015
Edge detector �
Man-made/Natural 5 722.33 144.47 0.0001
Edge detector �
Textured/Nontextured 5 122.29 24.45 0.0001
Edge detector �
Man-made/Natural � 5 74.03 14.81 0.0001
Textured/Nontextured
Error 1,580 3,813.98 2.41

Because there was an interaction between the perform-
ance of the algorithms and the image type, separate analy-
ses were conducted for each of the four subsets of the data.

Table 14 shows the results of the analysis. The significant
differences between the performance of the algorithms are
generally consistent with each other. The only inconsistency
was in the relative performance of the Rothwell and the
Nalwa algorithms. The Nalwa algorithm was determined to
be significantly better than the Rothwell algorithm on the
Natural Nontextured objects while the Rothwell algorithm
was determined to be significantly better than the Nalwa
algorithm on the Man-made Textured images. This flip-flop
may have masked the Rothwell algorithm from being sig-
nificantly different from the other algorithms in the analysis
based on the 20 images. This illustrates the dependence of
the measured performance of an edge detector on the im-
ages that are used to evaluate them. In general, we would
strongly caution against reading too much into the differ-
ences in rankings for different five-image groups because of
the small data size in each category.

TABLE 14
RELATIVE PERFORMANCE OF THE EDGE DETECTORS

ON SUBSETS OF THE FIXED PARAMETER IMAGES

Man-made Nontextured
Edge Mean Significant
Detector Difference
Bergholm (B) 5.28
Rothwell (R) 4.86
Iverson (I) 4.80 NONE
Canny (C) 4.79
Nalwa (N) 4.76

Man-made Textured
Edge Mean Significant
Detector Difference
Rothwell (R) 5.13
Bergholm (B) 5.10
Iverson (I) 5.04 (N, C) < (I, B, R)
Canny (C) 4.30
Nalwa (N) 4.04

Natural Nontextured
Edge Mean Significant
Detector Difference
Nalwa (N) 3.61
Canny (C) 3.39
Bergholm (B) 3.13 R < N
Iverson (I) 2.90
Rothwell (R) 2.84

Natural Textured
Edge Mean Significant
Detector Difference
Iverson (I) 4.24
Rothwell (R) 4.03
Bergholm (B) 4.00 (C, N) < I
Nalwa (N) 3.46
Canny (C) 3.35

7 DISCUSSION

7.1 Discussion of Results
The results show that significantly better results are ob-
tained when the parameters are adapted to each image than
when one set of fixed parameters are used. While this is to
be expected, it is a significant result because it implies that
the amount of effort expended in parameter optimization
can influence the measured performance of the algorithm.
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Therefore, equal effort must be applied in optimizing the
parameters for all of the algorithms to do a fair perform-
ance evaluation.

The analysis of the relative performance of the algo-
rithms resulted in a ranking of the algorithms as (Canny,
Nalwa) < Bergholm for fixed parameters and as (Iverson,
Nalwa) < (Rothwell, Bergholm, Canny) for adapted pa-
rameters. The performance increases from left to right and
the parentheses group algorithms whose difference in per-
formance was not statistically significant. It is evident that
the newer algorithms have achieved an increase in per-
formance over the older algorithms when the parameters
are fixed. When the parameters are adapted for each image,
however, the newer algorithms did not show the same sig-
nificant increase in performance. This performance increase
for fixed parameters is a real achievement because there is
at present no general way to adapt the parameters of an
algorithm for every image. If there were such a method, it
would be part of the edge detection algorithm itself.

The Canny algorithm had the highest performance when
the parameters were adapted for each image, but the lowest
performance when the parameters were fixed. Although
the performance was not statistically significantly better
than the performance of the Rothwell or Bergholm algo-
rithms, improving from the worst performance in fixed
parameters to the best performance in adapted parameter
performance is striking. This suggests that the parameters
of the Canny algorithm are “good knobs to turn.”

The choice of the edge detection algorithm may depend
on its application. For example, computer vision research-
ers developing higher level vision processing methods may
prefer to use the Canny algorithm because it can produce
better edge images if care is taken in adjusting the parame-
ters manually. This would provide them with better edges
to use in investigating higher level vision processing algo-
rithms, however, researchers implementing “production”
vision systems that cannot manually adapt the parameters
may benefit from selecting one of the newer algorithms to
incorporate into their system.

Finally, it is interesting that there were no significant dif-
ferences between the performance of the algorithms when
they were applied with fixed parameters to images contain-
ing Man-Made/Nontextured objects. These are the types of
images that these algorithms were designed to process.

7.2 Discussion of the Evaluation Methodology
The methodology we presented in this paper is novel in
two ways. It relies on using real images in the evaluation
and it measures the performance of edge detection algo-
rithms using the human visual system to estimate the abil-
ity to recognize objects in the images.

Measuring the performance of edge detection algo-
rithms using a sample of real images limits the evaluation
because the results that are obtained are conditioned to
the images used in the evaluation. Recall that the per-
formance of the algorithms changed with the image prop-
erties as specified by the crude categorization of images as
Man-made/Nontextured, Man-made/Textured, Natu-
ral/Nontextured, and Natural/Textured. This means that
a large number of images should be used to evaluate an

edge detector. In this work, 20 images were used in the
overall evaluation. While this is not a large number of
images, they have diverse image characteristics, and it is a
larger number of images than those which have been used
in any previous edge detector comparison study.

To cope with the errors introduced by using a sample of
real images, a moderate sized, diverse set of images were
used in the evaluation. Images of Man-Made and Natural
and Textured and Nontextured objects were used in the
evaluation because we believed that such images would
test the algorithms over a broad range of image attributes
and they could be used to test if the relative performance of
the algorithms depended on the image characteristics. It is
important to point out however that the analysis for each
type of image (i.e., Man-made/Textured) was done on a set
of only five images. While statistically significant differ-
ences in performance were found, the ability to generalize
the results may be very limited. For example, it is unlikely
that the particular five images we used adequately sample
the space of all Man-made/Textured images. Therefore, we
do not claim that any particular algorithm works best on
any of the general image categories (“Textured,” “Man-
Made,” etc.). We only defined and used the categories to
test the algorithms on meaningful subsets of the images.

Selecting the task of object recognition to evaluate the
performance of the algorithms from the edge images also
places constraints on the generalizations of the results.
Since the performance of the algorithms was measured us-
ing an object recognition task, the results are only directly
meaningful for that task. For example, using these results to
select an algorithm for isolating the features to use in stereo
correspondence processing may be risky.

7.3 Comparison With Signal Based Characterization
of Edges

A natural question to ask is how does the evaluation strategy
presented here compare with signal based strategies. We
explore this now. Typically signal based strategies compare
algorithms with respect to error criteria such as the probabil-
ity of false alarm and missed detection rates. However, com-
puting these errors requires the enunciation of ground truth
edges which is readily possible only for synthetic images.

We created a synthetic image consisting of a bright cir-
cular area against a dark background, similar to the one
shown in [7, p. 88]. First, we created a 256 � 256 sized image
consisting of a circle with a gray level of 140 and with ra-
dius 96 pixels against a gray background level of 60. We
then subsampled this image by first averaging in a 4 � 4
window and then resampling to arrive at a 64 � 64 image.
This subsampling effectively smoothes the intensity transi-
tion between the circle and the background, i.e., introduces
some partial pixel effects. To produce noisy versions of this
pure image, we added Gaussian noise to reduce the signal to
noise ratio to four and to produce the image shown in Fig. 11.

A three-labeled ground truth for the image was then
made. Pixels along the boundary of the circle were marked
are true-positive edges. Pixels which were connected to
true-positive marked pixels were marked as don’t care to
allow for varied connectedness. And the remainder of the
image was marked as a false-positive region.
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Fig. 11. Edge images for the five edge detectors with best of the 12 parameters sets used in the rating experiment as shown in Table 3. The
missed detection (Pmd) and the false alarm (Pfa) rates are shown below each image along the best parameter choices.

Fig. 12. Edge images of the noisy image (with SNR = 4) in (a) for the five edge detectors with the best of a 10 � 10 � 10 sampling of the parame-
ter space. The missed detection (Pmd) and the false alarm (Pfa) rates are shown below each image along the parameter choices.
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In order to evaluate the edge images produced from the
synthetic images, we counted the pixels that fall into the
various ground truth labeled regions. To account for loca-
tional error in the ground truth or edge images, a circular
search radius of three pixels was used to match true-
positive edges. (Choosing a smaller radius of two pixels did
not produce a significantly varied result.) However, no
search range was used for counting false-positive pixels.
The unmatched true-positive ground truth pixels deter-
mines the missed detection rate (Pmd). And false-positive
pixels contribute to the false alarm error of the edge detec-
tor (Pfa). Ideally, we would like both these errors to be zero.

We sampled the edge detector parameter spaces in two
different ways. First, for each edge detector we used the
same 12 parameter sets used in the rating experiment, as
shown in Table 3. Each edge image was evaluated in terms
of the missed edge pixels and false alarms. The best results
are shown in Fig. 11. The missed detection (Pmd) and the
false alarm (Pfa) rates are shown below each image. We no-
tice that except for the Canny detector and to some extent
the Nalwa-Binford detector, results of the other detectors
are unsatisfactory. This might be due to the inadequate
sampling of the parameter space using the 12 parameter
sets from the rating experiment. Indeed, one of the primary
conclusions from the rating experiment is that the parameters
need to be tuned on a per-image basis to get best perform-
ance. Because the synthetic image is so different from the real
images, it may need very different parameter settings.

Since we are working with a synthetic image, we can
choose a finer sampling of parameters in a more automated

way than done for the rating experiment. Recall that each
edge detector has three parameters that can be chosen. Thus,
in the second comparison we choose a 10 � 10 � 10 uniform
sampling of the parameter space for each detector. The best
results for each detector are displayed in Fig. 12. Notice that
all the detectors get near-perfect results. As we can see from
Figs. 13 and 14, all the edge detectors achieve perfect results
on a less noisy image (SNR = 16) and (of course) on a noise-
less image. This seems to suggest that signal based compari-
son on synthetic images might not be sufficient by itself to
distinguish between edge detectors. It needs to be comple-
mented by a more global assessment as offered by the rating
experiments in this paper. We base this observation not just
on the result of one synthetic image but also on our practical
experience with edge detectors. We believe that present day
edge detectors perform extremely well in terms of signal
based criteria measured on such simple synthetic images.

7.4 Extended Application of the Evaluation Method
It is important to realize that the ratings collected in this
experiment are relative evaluations. Therefore, it would be
a mistake to measure the performance of another algorithm
by collecting data for it and comparing the numerical scores
to the results collected in this experiment. Doing so would
ignore many potentially significant sources causing differ-
ences in performance. However, there is another way to
leverage off the results of this evaluation to measure the
relative performance of a new algorithm.

Reapplying the evaluation method in its complete form
would require obtaining new images, categorizing the images

Fig. 13. Edge images of the noisy image (with SNR = 16) in (a) for the five edge detectors. The results are with the best of a 10 � 10 � 10 sam-
pling of the parameter space. The missed detection (Pmd) and the false alarm (Pfa) rates are shown below each image along the parameter choices.
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by their properties, determining the parameters to use for
each algorithm and then comparing the relative perform-
ance of the algorithms. This is clearly time consuming.

To make it easier for other researchers to compare edge
detection algorithms, the images that were used in this
evaluation are being made available on the world wide web
(http://marathon.csee.usf.edu/edge/edge_detect

ion.html) and by anonymous ftp (ftp://figment.csee.
usf.edu/pub/Edge_Comparison/images). Using these
images, the only steps required to evaluate a new algorithm
are:

1) to identify the parameters for the new algorithm us-
ing the parameter selection methodology outlined in
this paper,

2) to conduct the edge detector comparison experiment
with both the new algorithm and at least a few algo-
rithms used in this study (we recommend the Canny
and Bergholm), and

3) to perform the statistical analysis.

Therefore, the steps involved in evaluating a new edge detec-
tion algorithm are to:

1) Decide which of the algorithms the new algorithm is
to be compared with. In principle, one could compare
a new algorithm with only the highest performance
algorithm. This, however, is not the recommended
approach because comparing several edge detectors is
much more informative, and is little more work than
comparing only two algorithms.

2) Acquire the images from the ftp site.

3) Select 64 initial parameter combinations for the new
algorithm and generate the 64 edge images for each of
the 20 gray-scale images. View the edge images and
select the best five for each of the 20 images (12 hours
time). Apply a greedy search to find a subset of 12 of
the 64 parameters. At each step in the search, select
the parameter set that reduces the number of best
edge images (top 5/64) included across all 20 images
the least number of times, by the largest amount pos-
sible. This means that one first searches for a subset of
parameters that includes all images at least once, then
includes each image at least twice, etc. until 12 pa-
rameter sets are included.

4) Print out evaluation sheets similar to those in Fig. 3
for each of the 240 edge images (20 images � 12 pa-
rameters). Print out the 20 gray-scale images. Make a
set of evaluation images for each participant by pho-
tocopying the prints. Have a number of participants
(we used nine) evaluate all 240 edge images in one
session. Note that paper is used because it allows the
participants to view the whole set of edge images at
once. This is not possible on a computer monitor due
to its limited resolution. The experiment should take a
couple of hours.

5) Calculate the ICC(3, k) correlation coefficient to check
that the subjects shared a common rating scheme.
Calculate the average ratings for each parameter set
for each image. To identify the best adapted parame-
ters, find the best average rating for each image. To
find the best fixed parameters, calculate the mean of

Fig. 14. Edge images of the noise less image in (a) for the five edge detectors. The results are with the best of a 10 � 10 � 10 sampling of the
parameter space. The missed detection (Pmd) and the false alarm (Pfa) rates are shown below each image along the parameter choices.
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the average ratings (across images) and find the pa-
rameter set with the largest mean. Please note, that
the parameters identified by this process may (and
probably are not) the very best fixed or adapted pa-
rameters attainable. If someone spent more time ad-
justing the parameters to each image (starting with
more than 64 initial parameter sets), they may get
better results. Therefore, the above procedure should
be used because it applies equal effort in the parame-
ter optimization process for all of the algorithms.

6) Print out the edge images for each algorithm for each
image. Also print the gray-scale images. Make a num-
ber of sets of evaluation images (we made one set for
each of 16 participants) by photocopying the prints.
Randomize the edge images within each of the 20 sets
of images separately for each of the evaluation sets.
Then randomize the order of the 20 sets of images.
Have each participant evaluate all of the edge images
in one session. The time required for this step will de-
pend on the number of edge detectors being com-
pared. If the new edge detector is compared to all five
of the edge detectors evaluated in this paper then
there will be 240 edge images for each participant to
evaluate. It should take a couple of hours to rate 240
edge images.

7) Calculate the ICC(3, k) correlation coefficient to de-
termine if the subjects shared a common rating
scheme. Divide the data in half (adapted and fixed
parameter data) and analyze each subset of data the
same way. Perform a set of one-way analysis of vari-
ance tests using the ratings obtained for each pair of
algorithms. The number of tests will depend on the
number of algorithms being compared. In deciding
whether each one way ANOVA test is significant, use
D  

0 05.
c , where c is the number of statistical tests being

done. We used D�= 0.005 because c is 10 (five choose
two). If all six algorithms are compared then there will
be 15 one-way ANOVAs and D  0 003. . Calculate the
means for each detector, order them, and group the
means using the results of the ANOVA tests to identify
statistically significant differences in the ratings. This
will provide the relative performance of the algorithms.

We estimate that a comparison of edge detectors using
the above method could realistically be conducted in three
or four weeks. This is worthwhile because it clearly demon-
strates the performance of an algorithm. Given the amount
of time it takes to develop a new edge detection algorithm,
investing one month to demonstrate its performance is, we
believe, a good use of that time.

It is important to note that repeated application of this
evaluation method can eventually “wear out” the image
set. This is because new edge detectors might be designed
to give good performance on the particular set of 20 images
used in the evaluation without providing good perform-
ance on other (unseen) images. This is an inherent problem
with making an evaluation data set public because an algo-
rithm can be over trained to perform well on the test data.
To minimize the possibility of this, a new set of images
could occasionally be substituted for the 20 images pres-

ently used in the evaluation. The cost of doing this would
be that the object screening must be performed with the
new images and the parameter setting experiment must be
reapplied for each algorithm.
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