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Abstract— The periocular region is the part of the face
immediately surrounding the eye, and researchers have recently
begun to investigate how to use the periocular region for
recognition. Understanding how humans recognize faces helped
computer vision researchers develop algorithms for face recog-
nition. Likewise, understanding how humans analyze periocular
images could benefit researchers developing algorithms for
periocular recognition. We presented pairs of periocular images
to testers and asked them to determine whether the two images
were from the same person or from different people. Our testers
correctly determined the relationship between the two images
in over 90% of the queries. We asked them to describe what
features in the images were helpful to them in making their
decisions. We found that eyelashes, tear ducts, shape of the eye,
and eyelids were used most frequently in determining whether
two images were from the same person. The outer corner of
the eye and the shape of the eye were used a higher proportion
of the time for incorrect responses than they were for correct
responses, suggesting that those two features are not as useful.

I. INTRODUCTION

The periocular region is the part of the face immediately
surrounding the eye. While the face and the iris have both
been studied extensively as biometric characteristics [1], [2],
the use of the periocular region for a biometric system is
an emerging field of research. Periocular biometrics could
potentially be combined with iris biometrics to obtain a
more robust system than iris biometrics alone. If an iris
biometrics system captured an image where the iris image
was poor quality, the region surrounding the eye might
still be used to confirm or refute an identity. A further
argument for researching periocular biometrics is that current
iris biometric systems already capture images containing
some periocular information, yet when making recognition
decisions, they ignore all pixel information outside the iris
region. The periocular area of the image may contain useful
information that could improve recognition performance, if
we could identify and extract useful features in that region.

A few papers [3], [4], [5], [6] have presented algorithms
for periocular recognition, but their approaches have relied
on general computer vision techniques rather than methods
specific to this biometric characteristic. One way to begin
designing algorithms specific to this region of the face is to
examine how humans make recognition decisions using the
periocular region.

Other computational vision problems have benefitted from
a good understanding of the human visual system. In a recent
book chapter, O’Toole [7] says, “Collaborative interactions
between computational and psychological approaches to face
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recognition have offered numerous insights into the kinds of
face representations capable of supporting the many tasks
humans accomplish with faces” [7]. Sinha et al. [8] describe
numerous basic findings from the study of human face
recognition that have direct implications for the design of
computational systems. Their report says “The only system
that [works] well in the face of [challenges like sensor noise,
viewing distance, and illumination] is the human visual
system. It makes eminent sense, therefore, to attempt to
understand the strategies this biological system employs, as
a first step towards eventually translating them into machine-
based algorithms” [8].

In this study, we investigated which features humans found
useful for making decisions about identity based on periocu-
lar information. We found that the features that humans found
most helpful were not the features used by current periocular
biometrics work [3], [4], [5], [6]. Based on this study, we
anticipate that explicit modeling and description of eyelids,
eyelashes, and tear ducts could yield more recognition power
than the current periocular biometrics algorithms published
in the literature.

The rest of this paper is organized as follows. Section II
summarizes the previous work in periocular biometrics.
Section III describes how we selected and pre-processed
eye images for our experiment. Our experimental method
is outlined in Section IV. Section V presents our analysis.
Finally, Section VI presents a summary of our findings,
a discussion of the implications of our experiment, and
recommendations for future work.

II. RELATED WORK

The work related to periocular biometrics can be clas-
sified into two categories. The first category includes initial
research in segmenting and describing periocular features for
image classification. This research used features to determine
ethnicity or whether an image was of a left or right eye. The
second category includes recent research that has analyzed
periocular features for recognition purposes.

A. Periocular Feature Extraction for Image Classification

A classifier to determine whether an eye image is a left
or right eye is a valuable tool for detecting errors in labeled
data. One preliminary method of differentiating between left
and right eyes used the locations of the pupil center and the
iris center [9]. The pupil is often located to the nasal side of
the iris rather than being directly in the center. An accurate
tear duct detector could also be used as a right/left classifier.
Abiantun and Savvides [9] evaluated five different methods



Table I: Periocular Research

Paper Data Algorithm Features

Park et al. [3] 899 visible light face images Gradient orientation histograms Eye region with
30 subjects Local binary patterns width: 6*iris-radius

Euclidean distance height: 4*iris-radius
SIFT matcher

Miller et al. [4] FRGC data: visible light face Local binary patterns Skin
images, 410 subjects City block distance
FERET data: visible light face
images, 54 subjects

Adams et al. [5] Same as Miller et al. Local binary patterns Skin
Genetic algorithm to select
features

Woodard et al. [6] MBGC data: near infrared face Local binary patterns Skin
images, 88 subjects Result fused with iris matching

results

This work Near infrared images Human analysis Eyelashes, Tear duct
from LG 2200 iris camera Eyelids, and
120 subjects Shape of eye

for detecting the tear duct in an iris image: (1) Adaboost
algorithm with Haar-like features, (2) Adaboost with a mix
of Haar-like and Gabor features, (3) support vector machines,
(4) linear discriminant analyisis, and (5) principal component
analysis. Their tear-duct detector using boosted Haar-like
features correctly classified 179 of 199 images where the
preliminary method had failed. Bhat and Savvides [10] used
active shape models (ASMs) to fit the shape of the eye and
predict whether an eye is a right or left eye. They trained
two different ASMs: one for right eyes, and one for left eyes.
They ran both ASMs on each image, and evaluated the fit of
each using Optimal Trade-off Synthetic Discriminant Filters.

Li et al. [11] extracted features from eyelashes to use for
ethnic classification. They observed that Asian eyelashes tend
to be more straight and vertically oriented than Caucasian
eyelashes. To extract eyelash feature information, they first
used active shape models to locate the eyelids. Next, they
identified nine image patches along each eyelid boundary.
They applied uni-directional edge filters to detect the direc-
tion of the eyelashes in each image patch. After obtaining
feature vectors, they used a nearest neighbor classifier to de-
termine whether each image showed an Asian or a Caucasian
eye. They achieved a 93% correct classification rate.

These papers describe methods for extracting periocular
features, but their focus is on classification, not recognition.
Our paper focuses on determining which features have the
most descriptive power for recognition.

B. Periocular Recognition

The use of periocular features for recognition is a new
field of research, and only a few authors have published in
the area. The first periocular paper published presented a fea-
sibility study for the use of the periocular biometrics [3]. The
authors, Park et al., implemented two methods for analyzing
the periocular region. In their “global method”, they used the
location of the iris as an anchor point. They defined a grid
around the iris and computed gradient orientation histograms

and local binary patterns for each point in the grid. They
quantized both the gradient orientation and the local binary
patterns (LBPs) into eight distinct values to build an eight-
bin histogram, and then used Euclidean distance to evaluate
a match. Their “local method” involved detecting key points
using a SIFT matcher. They collected a database of 899 high-
resolution visible-light face images from 30 subjects. A face
matcher gave 100% rank-one recognition for these images,
and their matcher that used only the periocular region gave
77%.

Another paper by Miller et al. also used LBPs to analyze
the periocular region [4]. They used visible-light face images
from the Facial Recognition Grand Challenge (FRGC) data
and the Facial Recognition Technology (FERET) data. The
periocular region was extracted from the face images using
the provided eye center coordinates. Miller et al. extracted
the LBP histogram from each block in the image and used
City Block distance to compare the information from two
images. They achieved 89.76% rank-one recognition on the
FRGC data, and 74.07% on the FERET data.

Adams et al. [5] also used LBPs to analyze periocular
regions from the FRGC and FERET data, but they trained a
genetic algorithm to select the subset of features that would
be best for recognition. The use of the genetic algorithm
increased accuracy from 89.76% to 92.16% on the FRGC
data. On the FERET dataset, the accuracy increased from
74.04% to 85.06%.

While Park et al., Miller et al., and Adams et al. all used
datasets of visible-light images, Woodard et al. [6] performed
experiments using near-infrared (NIR) light images from the
Multi-Biometric Grand Challenge (MBGC) portal data. The
MBGC data shows NIR images of faces, using sufficiently
high resolution that the iris could theoretically be used for
iris recognition. However, the portal data is a challenging
data set for iris analysis because the images are acquired
while a subject is in motion, and several feet away from
the camera. Therefore, the authors proposed to analyze both



the iris and the periocular region, and fuse information from
the two biometric modalities. From each face, they cropped
a 601x601 image of the periocular region. Their total data
set contained 86 subjects’ right eyes and 88 subjects’ left
eyes. Using this data, the authors analyzed the iris texture
using a traditional Daugman-like algorithm [12], and they
analyzed the periocular texture using LBPs. The periocular
identification performed better than the iris identification, and
the fusion of the two modalities performed best.

One difference between our work and the above mentioned
papers is the target data type (Table I). The papers above all
used periocular regions cropped from face data. Our work
uses near infrared images of a small periocular region, from
the type of image we get from iris cameras. The anticipated
application is to use periocular information to assist in iris
recognition when iris quality is poor.

Another difference between our work and the above work
is the development strategy. The papers mentioned above
used gradient orientation histograms, local binary patterns,
and SIFT features for periocular recognition. These authors
have followed a strategy of applying common computer
vision techniques to analyze images. We attempt to approach
periocular recognition from a different angle. We aim to
investigate the features that humans find most useful for
recognition in near infrared images of the periocular region.

III. DATA

In selecting our data, we considered using eye images
taken from two different cameras: an LG2200 and an
LG4000 iris camera. The LG2200 is an older model, and the
images taken with this camera sometimes have undesirable
interlacing or lighting artifacts [13]. On the other hand, in our
data sets, the LG4000 images seemed to show less periocular
data around the eyes. Since our purpose was to investigate
features in the periocular region, we chose to use the LG2200
images so that the view of the periocular region would be
larger. We hand-selected a subset of images, choosing images
in good focus, with minimal interlacing and shadow artifacts.
We also favored images that included both the inner and outer
corners of the eye.

We selected images from 120 different subjects. We had
60 male subjects and 60 female subjects. 108 of them were
Caucasian and 12 were Asian. For 40 of the subjects, we
selected two images of an eye and saved the images as a
“match” pair. In each case, the two images selected were
acquired at least a week apart. For the remaining subjects, we
selected one image of an eye, paired it with an image from
another subject, and saved it as a “nonmatch” pair. Thus,
the queries that we would present to our testers involved 40
match pairs, and 40 nonmatch pairs. All queries were either
both left eyes, or both right eyes.

Our objective was to examine how humans analyzed the
periocular region. Consequently, we did not want the iris to
be visible during our tests. To locate the iris in each image,
we used our automatic segmentation software, which uses
active contours to find the iris boundaries. Next, we hand-
checked all of the segmentations. If our software had made an

error in finding the inner or outer iris boundary, we manually
marked the center and a point on the boundary to identify
the correct center and radius of an appropriate circle. If the
software had made an error in finding the eyelid, we marked
four points along the boundary to define three line segments
approximating the eyelid contour.

For all of the images, we set the pixels inside the iris/pupil
region to black. Examples of images where the iris has been
blacked-out are shown in Figures 3 through 6.

IV. EXPERIMENTAL METHOD

In order to determine which features in the periocular
region were most helpful to the human visual system, we
designed an experiment to present pairs of eye images to
volunteers and ask for detailed responses. We designed a
graphical user interface (GUI) to display our images. At the
beginning of a session, the computer displayed two example
pairs of eye images to the user. The first pair showed two
images of a subject’s eye, taken on different days. The
second pair showed eye images from two different subjects.
Next, the GUI displayed the test queries. In each query, we
displayed a pair of images and asked the user to respond
whether he or she thought the two images were from the
same person or from different people. In addition, he could
note his level of confidence in his response – whether he was
“certain” of his response, or only thought that his response
was “likely” the correct answer. The user was further asked
to rate a number of features depending on whether each
feature was “very helpful”, “helpful”, or “not helpful” for
determining identity. The features listed were “eye shape”,
“tear duct”1, “outer corner”, “eyelashes”, “skin, “eyebrow”,
“eyelid, and “other”. If a user marked that some “other”
feature was helpful, he was asked to enter what feature(s)
he was referring to. A final text box on the screen asked
the user to describe any other additional information that he
used while examining the eye images.

Users did not have any time limit for examining the
images. After the user had classified the pair of images as
“same person” or “different people” and rated all features,
then he could click “Next” to proceed. At that point the
user was told whether he had correctly classified the pair
of images. Then, the next query was displayed. All users
viewed the same eighty pairs of images, although they were
presented in a different random order for each user.

We solicited volunteers to participate in our experiment
and 25 people signed up to serve as testers in our experiment.
Most testers responded to all of the queries in about 35
minutes. The fastest tester took about 25 minutes, and the
slowest took about an hour and 40 minutes. They were
offered ten dollars for participation and twenty dollars if they
classified at least 95% of pairs correctly.

1We used the term “tear duct” informally in this instance to refer to the
region near the inner corner of the eye. A more appropriate term might be
“medial canthus” but we did not expect the volunteers in our experiment to
know this term.
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Fig. 1. Eyelashes were considered the most helpful feature for making decisions about identity. The tear duct and shape of the eye were also very helpful.

V. RESULTS

A. How well can humans determine whether two periocular
images are from the same person or not?

To find an overall accuracy score, we counted the number
of times the tester was “likely” or “certain” of the correct
response; that is, we made no distinction based on the tester’s
confidence level, only on whether they believed a pair to be
from the same person, or believed a pair to be from different
people. We divided the number of correct responses by 80
(the total number of queries) to yield an accuracy score. The
average tester classified about 74 out of 80 pairs correctly,
which is about 92% (standard deviation 4.6%). The minimum
score was 65 out of 80 (81.25%) and the maximum score
was 79 out of 80 (98.75%)

B. Did humans score higher when they felt more certain?

As mentioned above, testers had the option to mark
whether they were “certain” of their response or whether
their response was merely “likely” to be correct. Some testers
were more “certain” than others. One responded “certain” for
70 of the 80 queries. On the other hand, one tester did not
answer “certain” for any queries. Discounting the tester who
was never certain, the average score on the questions where
testers were certain was 97% (standard deviation 5.2%).
The average score when testers were less certain was 84%
(standard deviation 11%). Therefore, testers obviously did
better on the subset of the queries where they felt “certain”
of their answer.

C. Did testers do better on the second half of the test than
the first half?

The average score on the first forty queries for each tester
was 92.2%. The average score on the second forty queries
was 92.0%. Therefore, there is no evidence of learning
between the first half of the test and the second.

D. Which features are correlated with correct responses?

The primary goal of our experiment was to determine
which features in the periocular region were most helpful to
the human visual system when making recognition decisions.
Specifically, we are interested in features present in near-
infrared images of the type that can be obtained by a typical
iris camera. To best answer our question, we only used
responses from cases where the tester correctly determined
whether the image pair was from same person. From these
responses, we counted the number of times each feature was
“very helpful” to the tester, “helpful”, or “not helpful”. A bar
chart of these counts is given in Figure 1. The features in this
figure are sorted by the number of times each feature was
regarded as “very helpful”. According to these results, the
most helpful feature was eyelashes, although tear duct and
eye shape were also very helpful. The ranking from most
helpful to least helpful was (1) eyelashes, (2) tear duct, (3)
eye shape, (4) eyelid, (5) eyebrow, (6) outer corner, (7) skin,
and (8) other.

Other researchers have found eyebrows to be more useful
than eyes in identifying famous people [8], so the fact that
eyebrows were ranked fifth out of eight is perhaps deceiving.
The reason eyebrows received such a low ranking in our
experiment is that none of the images showed a complete
eyebrow. In about forty queries, the two images both showed
some part of the eyebrow, but in the other forty queries,
the eyebrow was outside the image field-of-view in at least
one of the images in the pair. On images with a larger field
of view, eyebrows could be significantly more valuable. We
suggest that iris sensors with a larger field of view would be
more useful when attempting to combine iris and periocular
biometric information.

The low ranking for “outer corner” (sixth out of eight) did
not surprise us, because in our own observation of a number
of eye images, the outer corner does not often provide much
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Fig. 2. We compared the rankings for the features from correct responses (Fig. 1) with the rankings from incorrect responses. The shape of the eye and
the outer corner of the eye were both used more frequently on incorrect responses than on correct responses. This result suggests that those two features
would be less helpful for making decisions about identity than other features such as eyelashes.

unique detail for distinguishing one eye from another. There
were three queries where the outer corner of the eye was not
visible in the image (See Figure 6).

Skin ranked seventh out of eight in our experiment,
followed only by “other”. Part of the reason for the low
rank of this feature is that the images were all near-infrared
images. Therefore, testers could not use skin color to make
their decisions. This result may not be quite as striking if
we used a data set containing a greater diversity of ethnic-
ities. However, we have noticed that variations in lighting
can make light skin appear dark in a near-infrared image,
suggesting that overall intensity in the skin region may have
greater intra-class variation than inter-class variation in these
types of images.

E. Which features are correlated with incorrect responses?

In addition to considering which features were marked
most helpful for correct responses, we also looked at how
features were rated when testers responded incorrectly. For
all the incorrectly answered queries, we counted the number
of times each feature was “very helpful”, “helpful”, or “not
helpful”. A bar chart of these counts is given in Figure 2.
We might expect to have a similar rank ordering for the
features in the incorrect queries as we had for the correct
queries, simply because if certain features are working well
for identification, a tester would tend to continue to use the
same features. Therefore, rather than focusing on the overall
rank order of the features, we considered how the feature
rankings differed from the correct responses to the incorrect
responses. The ranking from most helpful feature to least
helpful feature for the incorrect queries was (1) eye shape,
(2) tear duct, (3) eyelashes, (4) outer corner, (5) eyebrow,
(6) eyelid, (7) skin, and (8) other. Notice that “eye shape”
changed from rank three to rank one. Also “outer corner”

Table II: Summary of Tester Responses
to an Open-Ended Request to list Most Useful Features

Query Type Helpful Features Unhelpful or
Misleading Features

Match clusters of eyelashes glare
Queries single “stray” eyelashes shadow

eyelash density different lighting
eyelash direction different angle of eye
eyelash length different eye shape
eyelash intensity amount the eye was open
tear duct hair in one image
eyebrow contact lens
unusual eye shape vs. no contact lens
slant of eyes make-up vs. no make-up
amount the eye was open
contacts
make-up

Nonmatch lashes in tear duct region glare
Queries eyelash density make-up

eyelash direction
eyelash length
eyelash intensity
tear duct
eyebrow
eyelid
eyeshape
crease above the eye
contacts
make-up

changed from rank six to rank four. This result implies that
eye shape and outer corner are features that are less valuable
for correct identification. On the other hand, “eyelashes”
and “eyelid” both changed rank in the opposite direction,
implying that those features are more valuable for correct
identification.



F. What additional information did testers provide?

In addition to the specific features that testers were asked
to rate, testers were also asked to describe other factors they
considered in making their decisions. Testers were prompted
to “explain what features in the image were most useful to
you in making your decision”, and enter their response in a
text box.

Table II summarizes testers’ free-responses. Only re-
sponses from queries where they got the answer correct
are listed. Testers found a number of different traits of
eyelashes valuable. They considered the density of eyelashes
(or number of eyelashes), eyelash direction, length, and
intensity (light vs. dark). Clusters of eyelashes, or single
eyelashes pointing in an unusual direction were helpful, too.
Contacts were helpful as a “soft biometric”. That is, the
presence of a contact lens in both images could be used as
supporting evidence that the two images were of the same
eye. However, no testers relied on contacts as a deciding
factor. Two of the eighty queries showed match pairs where
one image in the pair showed a contact lens, and the other
did not. Testers did well for both of these pairs: the percents
of testers who classified these pairs correctly were 92% (23
of 25) and 96% (24 of 25).

Make-up was listed both as “very helpful” for some
queries, and as “misleading” for other queries. When a
subject wore exactly the same type of make-up for multiple
acquisition sessions, the make-up was useful for recogni-
tion. Alternatively, when a subject changed her make-up,
recognition was harder. One of the eighty queries showed
a match pair where only one of the images displayed make-
up. Although 24 of 25 testers still correctly classified this
pair, every tester who provided written comments for this
pair remarked that the presence of mascara in only one of
the images was distracting or misleading.

G. Which pairs were most frequently classified correctly, and
which pairs were most frequently classified incorrectly?

There were 21 match pairs that were classified correctly by
all testers. One example of a pair that was classified correctly
by all testers is shown in Figure 3. There were 12 nonmatch
pairs classified correctly by all testers. An example is shown
in Figure 4.

Figure 5 shows the match pair most frequently classified
incorrectly. Eleven of the 25 testers mistakenly thought that
these two images were from different people. This pair is
challenging because the eye is wide open in one of the
images, but not it the other. Figure 6 shows the nonmatch
pair most frequently classified incorrectly. This pair was also
misclassified by 11 testers, although the set of 11 testers
who responded incorrectly for the pair in Figure 6 was
different from the set of testers who responded incorrectly
for Figure 5.

VI. CONCLUSION

We have found that when presented with unlabeled pairs of
periocular images in equal numbers, humans can classify the
pairs as “same person” or “different people” with an accuracy

of about 92%. When expressing confident judgement, the
accuracy is about 97%. We compared scores on the first half
of the test to the second half of the test and found no evidence
of learning as the test progressed.

In making their decisions, testers reported that eyelashes,
tear ducts, shape of the eye, and eyelids were most helpful.
However, eye shape was used in a large number of incorrect
responses. Both eye shape and the outer corner of the eye
were used a higher proportion of the time for incorrect
responses than they were for correct responses, thus those
two features might not be as useful for recognition. Eyelashes
were helpful in a number of ways. Testers used eyelash
intensity, length, direction, and density. They also looked for
groups of eyelashes that clustered together, and for single
eyelashes separated from the others. The presence of contacts
was used as a soft biometric. Eye make-up was helpful
in some image pairs, and distracting in others. Changes
in lighting were challenging, and large differences in eye
occlusion were also a challenge.

Our analysis suggests some specific ways to design pow-
erful periocular biometrics systems. We expect that a biomet-
rics system that explicitly detects eyelids, eyelashes, the tear
duct and the entire shape of the eye could be more powerful
than some of the skin analysis methods presented previously.

The most helpful feature in our study was eyelashes. In or-
der to analyze the eyelashes, we first would locate and detect
the eyelids. Eyelids can be detected using edge detection and
Hough transforms [14], [15], a parabolic “integrodifferential
operator” [12], or active contours [16]. The research into
eyelid detection has primarily been aimed at detecting and
disregarding the eyelids during iris recognition, but we
suggest detecting and describing eyelids and eyelashes to
aid in identification. Feature vectors describing eyelashes
could include measures for the density of eyelashes along
the eyelid, the uniformity of direction of the eyelashes, and
the curvature and length of the eyelashes. We could also use
metrics comparing the upper and lower lashes.

The second most helpful feature in our study was the
tear duct region. Once we have detected the eyelids, we
could extend those curves to locate the tear duct region.
This region should more formally be referred to as the
medial canthus. A canthus is the angle or corner on each
side of the eye, where the upper and lower lids meet.
The medial canthus is the inner corner of the eye, or the
corner closest to the nose. Two structures are often visible
in the medial canthus, the lacrimal caruncle and the plica
semilunaris [17]. These two features typically have lower
contrast than eyelashes and iris. Therefore, they would be
harder for a computer vision algorithm to identify, but if
they were detectable, the sizes and shapes of these structures
would be possible features. Detecting the medial canthus
itself would be easier than detecting the caruncle and plica
semilunaris, because the algorithm could follow the curves
of the upper and lower eyelids until they meet at the canthus.
Once detected, we could measure the angle formed by the
upper and lower eyelids and analyze how the canthus meets
the eyelids. In Asians, the epicanthal fold may cover part



Fig. 3. All 25 testers correctly classified these two images as being from the same person.

Fig. 4. All 25 testers correctly classified these two images as being from different people

Fig. 5. Eleven of 25 people incorrectly guessed that these images were from different people, when in fact, these eyes are from the same person. This
pair is challenging because one eye is much more open than the other.



Fig. 6. Eleven of 25 people incorrectly guessed that these images were from the same person, when in fact, they are from two different people.

of the medial canthus [17] so that there is a smooth line
from the upper eyelid to the inner corner of the eye (e.g.
Figure 3). The epicanthal fold is present in fetuses of all
races, but in Caucasians it has usually disappeared by the
time of birth [17]. Therefore, Caucasian eyes are more likely
to have a distinct cusp where the medial canthus and upper
eyelid meet (e.g. Figure 5).

The shape of the eye has potential to be helpful, but
the term “eye shape” is ambiguous, which might explain
the seemingly contradictory results we obtained about the
helpfulness of this particular feature. To describe the shape
of the eye, we could analyze the curvature of the eyelids. We
could also detect the presence or absence of the superior
palpebral furrow – the crease in the upper eyelid – and
measure its curvature if present.

Previous periocular research has focused on texture and
key points in the area around the eye. The majority of prior
work [4], [5], [6] masked an elliptical region in the middle
of the periocular region “to eliminate the effect of textures
in the iris and the surrounding sclera area” [4]. This mask
effectively occludes a large portion of the eyelashes and tear
duct region, thus hiding the features that we find are most
valuable. Park et al. [3] do not mask the eye, but they also
do not do any explicit feature modeling beyond detecting the
iris. These promising prior works have all shown recognition
rates at or above 77%. However, we suggest that there
is potential for greater recognition power by considering
additional features.
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