
Accepted Manuscript

http://dx.doi.org/10.1016/j.cviu.2008.08.001
http://dx.doi.org/10.1016/j.cviu.2008.08.001


ACCEPTED MANUSCRIPT 
 

Pupil Dilation Degrades Iris Biometric Performance

Karen Hollingsworth, Kevin W. Bowyer, and Patrick J. Flynn

Dept. of Computer Science and Engineering,

University of Notre Dame

Notre Dame, Indiana 46556

kholling, kwb, or flynn @ cse.nd.edu

June 9, 2008

Abstract

Iris biometrics research has largely ignored the problems associated with variations in pupil dilation

between the enrollment image and the image to be recognized or verified. Indeed, in most current systems,

information about pupil dilation is discarded when the iris region is normalized to a dimensionless polar

coordinate system from which the iris code is obtained. This work studies the effect of pupil dilation on

the accuracy of iris biometrics. We found that when the degree of dilation is similar at enrollment and

recognition, comparisons involving highly dilated pupils result in worse recognition performance than

comparisons involving constricted pupils. We also found that when the matched images have similarly

highly dilated pupils, the mean Hamming distance of the match distribution increases and the mean

Hamming distance of the non-match distribution decreases, bringing the distributions closer together

from both directions. We further found that when matching enrollment and recognition images of the

same person, larger differences in pupil dilation yield higher template dissimilarities, and so a greater

chance of a false non-match. We recommend that a measure of pupil dilation be kept as meta-data for

every iris code. Also, the absolute dilation of the two images, and the dilation difference between them,

should factor into a confidence measure for an iris match.

Keywords: Iris biometrics, pupil dilation.
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1 Introduction

Each individual human iris is believed to have a unique texture pattern of sufficient complexity that it

can be used for identification. Several commercial iris biometric systems exist [1, 2, 3, 4]. For a recent

comprehensive survey of commercial and research systems for iris recognition, see [5]. Most commercial iris

technology is based on algorithms developed by Daugman [6, 7]. These algorithms take an image of an eye,

locate the limbic and pupillary boundaries of the iris, and apply a transformation that maps the iris into a

dimensionless polar coordinate system. Next, Gabor texture filters are applied to generate a binary iris code

that represents the texture in the iris. An iris code obtained from an image can be compared to a reference

iris code for a person to verify a claimed identity, or compared to a gallery of iris codes to recognize a person.

One difficulty in processing iris images for biometrics is that the iris changes in size due to involuntary

dilation. Two muscle systems, a sphincter and several radial dilator muscles, control the size of the iris

to adjust the amount of light entering the pupil. Naturally, a recognition system should be made to be

robust to changes in pupil dilation. In Daugman’s early work [6], he assumed a “homogenous rubber sheet

model” which assigns to each point on the iris a pair of coordinates (r, θ). The radius, r, ranges from 0 to

1, where points on the pupillary boundary have a radial coordinate of 0, and points on the limbic boundary

have a radial coordinate of 1. The angle θ ranges from 0 to 2π. For an image I(x, y), the mapping of raw

coordinates (x, y) to dimensionless polar coordinates (r, θ) can be represented as I(x(r, θ), y(r, θ)) → I(r, θ).

This mapping results in a size-normalized representation of the iris. By interpreting the radius and angle as

Cartesian coordiates, we can display a rendering of the size-normalized iris region. An example iris image

from our dataset, and its corresponding size-normalized iris region are shown in Figures 1 and 2, respectively.1

The normalization of the iris makes it possible to compare two images of different sizes, but it discards

information about the degree of pupil dilation. Furthermore, this transformation is not entirely accurate

because it assumes that when the pupil dilates, the stretch of the iris tissue in the radial direction is linear.

Some researchers have investigated other ways to account for pupil dilation more precisely, but no prior

research has quantified how differing degrees of dilation affect the performance of an iris biometrics system.

In this paper, we quantify the effects of pupil dilation on the authentic and imposter distributions in iris

biometrics.
1In order to render this polar coordinate system on paper, we have introduced an arbitrary cut in the iris region between 0

and 2π. However, in actuality, there is no such cut in the angular variable.
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Figure 1: A sample iris image from our dataset.

Figure 2: A size-normalized rendering of the iris region from Figure 1.
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2 Research in Iris Dilation

Iris tissue does not follow a perfect “rubber sheet” model when the pupil dilates and contracts. Wyatt [8]

explains that this assumption is a good approximation, but does not perfectly match the actual deformation.

He developed a mathematical model to explain how the collagen fibers in the iris deformed as the pupil

dilated. Initially he restricted his model to require linear deformation along the radial direction of the iris,

and then he later relaxed that constraint. He compared his models to measurements of surface features from

several human irises. He reports that “some of the data ... appear to be a better match to the lines indicating

linear behavior; other data ... appear to be a better match to the lines indicating nonlinear behavior.” He

further compared his model to some measurements of angles of collagen fibers measured on an iris, and found

that the nonlinear model matched better.

Some iris biometrics researchers have noted that pupil dilation affects the quality of a match between iris

images [9, 10, 11]. Ma et al. [9] characterized how many of their false non-matches were due to pupil dilation.

They explained that “under the extreme conditions (namely the iris texture is excessively compressed by

the pupil), the iris after normalization still has many differences with its normal state (i.e., the iris has a

pupil of normal size). Therefore, the matching distance between such a pair of iris images is very large. In

our experiments, 10.7% false non-matches result from the pupil changes. This is a common problem in all

iris recognition methods.” Thornton et al. [10] add an extra processing step to account for the nonlinear

deformations of the iris that occur when the pupil dilates. They find the maximum a posteriori probability

estimate of the parameters of the relative deformation between a pair of images. Their results show that

estimating the relative deformation between the two images improves performance. Wei et al. [11] account

for dilation by modeling nonlinear iris stretch as a sum of linear stretch and a Gaussian deviation term.

Their training set includes multiple images of a subject taken under gradually varying illumination. They

compare their algorithm with two previous algorithms which use the simple rubber-sheet model and show

that their model achieves a lower equal error rate. Both Thornton and Wei focus on comparing algorithms.

Neither work reports experimental results employing subsets of images with different degrees of dilation.

Other than the few papers mentioned above [9, 10, 11], the large majority of iris biometrics literature

assumes that the “rubber sheet” approach of Daugman is sufficient to deal with the differences in dilation.

Furthermore, even though a few researchers have looked at pupil dilation, we have not found any work that

quantifies the effect of dilation on recognition. This work is the first that we are aware of to examine the

impact of dilation on the performance of an iris recognition algorithm.
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3 Data and Software

In order to measure how dilation affects recognition, a special iris image data set was collected at the

University of Notre Dame between July 2007 and September 2007, using an LG 2200 EOU camera. This

data set includes 630 left eye images and 633 right eye images from 18 different subjects. This set includes

ten males and eight females. Twelve subjects were Caucasians and six were Asians. In order to have images

of varying pupil dilation, we turned off the ambient lighting when acquiring 28% of the images. The LG

2200, like all commercial iris cameras, uses infrared LEDs to actively illuminate the iris and therefore can

still take high-quality iris images in the absence of ambient lighting. Iris dilation is driven by the visible light

level, not by infrared light. The LEDs in the LG 2200, while visible, are not bright enough to significantly

affect pupil size.

We used iris recognition software developed by Liu [12] and modified as described in [13] and [14]. This

software, based on ideas from Daugman [6] and Wildes [15] and on the implementation of Masek [16], uses a

Canny edge detector and a Hough transform for segmentation. The boundaries of the iris are approximated

using two circles that are not necessarily concentric. We visually inspected the segmentation for all the

1263 images. The iris and pupil were correctly located in all of the images. Once an image is segmented,

log-Gabor filters are used to analyze the texture of the iris and compute a binary iris code. If parts of the

iris are occluded by eyelids or eyelashes, the corresponding bits in the iris code are masked, or excluded from

future computations. To compare two irises, our system calculates the fractional Hamming distance, or the

fraction of unmasked bits that disagree between the two iris codes. For conciseness throughout this paper,

any reference to Hamming distance refers to the fractional Hamming distance.

To show how this software performs for iris recognition, a graph of the match and non-match distributions

for this image set is shown in Figure 3. The match distribution shows the histogram of Hamming distances

between iris codes for comparisons in which both images are of the same iris. The non-match distribution

shows distances from comparisons in which the two images come from different irises. The amount of overlap

between the two distributions is related to the error rates in the system. As the figure shows, the match

distribution clearly has a lower mean than the non-match distribution, but there is some overlap between

the distributions. In commercial biometric systems, this overlap is typically handled by setting a threshold

on the Hamming distance so that the probability of a false match is at or below a specified level; e.g., less

than one in one million.

Daugman [7] documents the expected non-match distribution for an iris recognition system. He explains
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Figure 3: Distribution of fractional Hamming distances for all iris comparisons in our data set. Two his-
tograms are shown. The one on the left represents comparisons between two images of the same iris. The
one on the right represents comparisons between two different irises.

that “because any given bit in the phase code for an iris is equally likely to be a 1 or 0, and different irises

are uncorrelated, the expected proportion of agreeing bits between the codes for two different irises is HD =

0.500.” However, in order to account for tilt of a person’s head when an image is taken, many iris recognition

algorithms try multiple possible rotations of an iris during a comparison, and assume the best possible match

to be the correct alignment of the iris. Daugman notes that “this ‘best of n’ test skews the distribution to

the left and reduces its mean from about 0.5 to 0.458” [7]. Likewise, our non-match distribution is also

skewed slightly to the left, with a mean of 0.443, and with the majority of Hamming distance values falling

between 0.4 and 0.5.

Our match distribution shows that our software does not perform as well as Daugman’s. In Figure 9 of

Daugman’s paper [7], his match distribution has a mean Hamming distance of 0.110. The mean Hamming

distance for our match distribution is 0.2479. However, our dataset intentionally includes wide variation in

pupil dilation. We argue that our software performs well enough that it can be used to show interesting

observations about how dilation affects the performance. As demonstrated in [12], this system achieves a

97.1% rank-one recognition rate on an experiment of 4249 images.
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Figure 4: Histogram showing different degrees of dilation for irises in our data set. A dilation ratio of 0.2
corresponds to a very small pupil (contracted eye), and a dilation ratio of 0.7 corresponds to a very large
pupil (dilated eye).

4 Measuring Dilation

Our first step was to measure the degree of dilation for each image. The segmentation step of the analysis

provided the radius of the pupil and the radius of the iris. To measure dilation, we divided the pupil radius

by the iris radius. Since the pupil radius is always less than the iris radius, this dilation ratio must fall

between 0 and 1. In our 1263 images, all dilation ratios were between 0.2137 and 0.7009. The distribution

of dilation ratios is shown in Figure 4.

Winn et al. [17] report that “several factors are known to affect pupil size, including the level of retinal

illuminance, the accommodative state of the eye, and various sensory and emotional conditions. In addi-

tion, the size of the pupil tends to change as a function of the individual’s age, with smaller pupils being

predominant in the elderly population.” In our data, the two oldest subjects had the smallest pupil size.

The minimum dilation ratio for the oldest subject was 0.21. Wyatt [8] reports that typical pupil diameters

during waking hours fall within 12 to 60 percent of iris diameters. We do not have any images with a pupil

diameter as small as 12% of the iris diameter. However, since pupil size is somewhat correlated with age [17],

the lack of images with very small pupils may be due to the fact that the majority of the subjects in our

dataset are between 19 and 32 years old, and we have no subjects older than 52 in our dataset.

Two of the subjects attended only one acquisition session. Figure 5 plots the minimum and maximum
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Figure 5: Minimum and maximum dilation ratios for 32 different eyes, sorted by minimum dilation ratio.
Some subjects’ eyes naturally tended to have higher dilation ratios than other subjects’ eyes. Also, some
subjects showed more variation in their pupil size than others.

dilation ratios for the remaining 16 subjects (32 eyes). For one eye, the pupil radius varied as much as 31%

of the iris radius. The eye showing the least change in pupil dilation still had the pupil radius varying by

14%.

As mentioned in the previous section, some of the images were taken with the overhead lights in the

room off. Therefore it is natural to wonder whether the variation in pupil size might occur under real-world

conditions. One realistic scenario that causes pupils to contract is a higher level of illumination in the room.

One simple way to get pupils to dilate is to use eye drops containing atropine sulphate, a chemical compound

used by optometrists to dilate the pupil during eye exams. Such drops can cause a person’s pupils to dilate

and remain dilated for hours. An attacker might use such drops to try to fool the biometric system, or a

legitimate user may have dilated pupils after a routine visit to the optometrist. An even more common way

of causing pupils to dilate is to wear sunglasses. Sunglasses typically block harmful ultraviolet frequencies

of light, but have no effect on infrared illumination. Therefore, an infrared image of the eye can be acquired

even when a subject is wearing sunglasses. We took two pictures, one of an author wearing sunglasses and

one of the same person with an extra lamp next to the camera (Figure 6). With sunglasses, the pupil dilation

ratio was 0.54 which was nearly as large as the largest dilation ratio from that subject with the lights off

(0.56). With the extra lamp in the room, the dilation ratio was 0.31. The pupil radius had varied by 23%

between the two pictures. Therefore, we conclude that such a range of pupil variation is not uncommon and
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should be expected and evaluated.

We avoided using sunglasses in acquiring the images for our experiments, because we did not want

the complicating factor of extra specular reflections from the glasses. Therefore, all the images used in our

experiments were taken without glasses. Any differences in dilation were obtained by turning off the ambient

lighting. Figures 7, 8, and 9 show the pupil variation for three of the subjects in our dataset. These three

figures show two iris images each: one image taken under normal ambient room lighting, and one taken with

the ambient lights off.

5 Degree of Dilation Affects Performance

In evaluating the impact of dilation on iris biometrics, the first question to consider is whether the iris

recognition software performs well on a set of data made up of entirely dilated pupils. One might expect

that if all images in a dataset showed a large degree of pupil dilation, but were all consistently dilated, the

system would still perform well.

Since all dilation ratios in our dataset fall between 0.2 and 0.8, we divided the images into three sets.

Set 1 contains images with a dilation ratio less than 0.4. Images in this set have small pupils. Set 2 contains

images with a dilation ratio between 0.4 and 0.6. Finally, set 3 contains the most dilated pupils, with dilation

ratios greater than 0.6. We obtained the match and non-match distributions for each of the three sets. The

match distributions for all three sets are shown in Figure 10.

Surprisingly, even though all irises within each set have consistent degrees of dilation, not all sets showed

the same performance. In set 1, the mean Hamming distance for the match distribution is 0.1982. For set 2,

the mean Hamming distance is 0.2470. Set 3 has a mean Hamming distance of 0.2592. It is possible that this

result (and other results presented in this paper) may be due in part to confounding factors such as focus,

or imperfections in eyelash detection. However, there are images with varying degrees of focus and varying

amounts of eyelash occlusion in all three sets; thus we do not suspect that these would be the main factors

in this result. We conclude then, that as pupils get larger, the mean of the match distribution increases,

getting closer to the non-match distribution and increasing the rate of false rejects, or false non-matches.

One probable reason for the degraded performance in the set of dilated eyes involves the simple fact

that there is less iris area visible. Typical iris recognition algorithms convert the annular region of the eye

to a size-normalized region. In a dilated image, less iris area is available for creating each pixel in the

size-normalized image. With less iris data available the eyes will be characterized more poorly.
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(a) (b)

Figure 6: It is easy to obtain a difference in pupil size. The iris image in part (a) was taken with an extra
lamp in the room, and the image in (b) was taken with the subject wearing sunglasses. The pupil in (b) is
almost as dilated (dilation ratio 0.54) as the most dilated pupil (0.56) seen in our experimental data for this
subject.

(a) (b)

Figure 7: This subject (subject number 05288) showed the biggest difference in pupil size in the data set.
The smallest dilation ratio (pupil radius/iris radius) for this subject was 0.3478 and the largest dilation ratio
was 0.6545.

(a) (b)

Figure 8: This subject (subject number 02463) had the smallest pupils in the dataset. The smallest dilation
ratio for this subject was 0.2137, and the largest dilation ratio was 0.4762.
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(a) (b)

Figure 9: This subject (subject number 05379) had the largest pupils in the dataset. The smallest dilation
ratio for this subject was 0.5391, and the largest was 0.7009.

Figure 10: The match distribution for comparisons between eyes with large pupils has a larger mean than
the distribution of comparisons between eyes with small pupils.
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The creation of the size-normalized iris image involves sampling the original image. The sample points on

the original image will be spaced out along a line going from the pupil, radially outward. A typical iris image

might have sample points approximately three pixels apart. For an eye with a large pupil, the sampling

density along such a line will be higher. As pupil dilation increases, the radial width of the iris decreases.

Thus, there are fewer distinct pixels along the annular width of the iris, but the number of sample points

for the normalized iris image remains the same.

In creating the normalized image, our system uses a square of four pixels and interpolates a single value

from those four pixels to create one pixel of the normalized image. The normalized image that is created is

20 pixels by 240 pixels. Therefore, the system is expecting an iris with a width at least 40 pixels across. The

most dilated pupil in the images analyzed for this paper has an iris that is only 35 pixels in annular width.

For this image, the values of some pixels are sampled more than once in creating the normalized image.

The International Standards Organization has specified that an iris image used for recognition should

have 200 pixels across the diameter of the iris [18]. However, we suggest that the diameter of the iris is an

inadequate way to measure the total amount of iris data available. Instead, we recommend that the annular

width of the iris is a more correct measure of iris size. Annular width is easily computed by taking the

iris radius and subtracting the pupil radius. For systems that allow non-circular pupillary and/or limbic

boundaries, the distance between the two can be averaged over a number of radial samples. Even if two

circles describing the pupil and iris are not concentric, this measure of annular width is still easily computed,

and still represents an average annular width of the iris. However, recording the minimum annular width

may also be useful in determining the quality of an image.

Figure 11 shows the non-match distributions for the three sets of iris images. In set 1, the mean Hamming

distance for the non-match distribution is 0.4483. The mean Hamming distance for set 2 is 0.4398 and the

mean Hamming distance for set 3 is 0.4265. The difference in means for the non-match distribution was not

as large as the difference in means for the match distribution. Therefore, we wished to test whether this

difference was statistically significant. To simplify the test, we split the data into two groups, where the

first group contains all eyes with dilation ratios below the median, and the second group contains all eyes

with dilation ratios above the median. In this test, the null hypothesis is that the means of the non-match

distributions for the two groups are equal, and the alternative hypothesis is that they are not equal. We

used a balanced, one-factor ANOVA test to compare the means of the two groups of data. The factor in

this test is the dilation ratio. We got an F-statistic of 51512, and a corresponding p-value of 0.0000. Thus,

we concluded that the difference between the two groups was indeed significant. That is, the non-match
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Figure 11: The non-match distribution of comparisons between eyes with large pupils has a smaller mean
than the distribution of comparisons between eyes with small pupils.

distribution for dilated eyes has a different mean than the non-match distribution for non-dilated eyes. In

our experimental results, the mean Hamming distance of the non-match distribution decreases as pupils get

larger, moving closer to the match distribution and therefore increasing the rate of false matches.

We know of two possible explanations for the decrease in the mean of the non-match distributions. The

first explanation relates to the number of bits used in a comparison between two iris codes. Our system

employs masking logic to exclude parts of the iris code that are affected by eyelids and eyelashes. This

masking leaves fewer bits available for the Hamming distance computation when an iris has more eyelid and

eyelash occlusion. Pupil dilation pulls more of the iris towards the eyelids, causing a larger percentage of

normalized iris area to be occluded, and consequently fewer bits used in the comparison.

When fewer bits are available for comparison between two iris codes, one expects the underlying raw

distribution of fractional Hamming distance scores (before rotations to allow for head tilt) to be broader
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than when more bits are unmasked and available. This is for the same reason that tossing a coin many

times will generate a narrower distribution of outcome fractions of “heads” than when tossing it few times;

indeed the standard deviation of that fractional binomial distribution in [0,1] is inversely proportional to

square root of n, where n is the number of coin tosses, or the number of bits. Therefore, large pupil

dilation, which reduces n, increases the standard deviation of the underlying distribution of simple fractional

Hamming distance scores. When extreme values are taken from this distribution (the “best match” after

several rotations to compensate for head/camera/eye tilt), the mean of this extreme value distribution must

obviously be lower as a result of the larger standard deviation2.

To test this explanation, we rescaled all of the Hamming distances based on the number of bits n used

in the computation. Daugman [19] gives a rescaling rule to adjust Hamming distances based on the number

of bits used. We used Daugman’s SQRT normalization (given in equation 14 of [19]) to rescale all of the

Hamming distances. However, we replaced his scaling parameter with our own parameter, 4929, based on

the average number of bits used in a comparison between two iris codes for our algorithm and dataset:

HDnorm = 0.5 − (0.5 − HDraw)

√

n

4929
. (1)

The raw Hamming distance means and the SQRT normalized means are shown graphically in Figure 12.

Before the SQRT normalization, the difference in mean between set 1 and set 3 was 0.4483 - 0.4265 = 0.0218.

After SQRT normalization, the difference was .4475 - .4305 = 0.0170. Therefore, SQRT normalization

accounted for nearly a quarter of the difference in the means between set 1 and set 3. It is possible that if

our eyelid/eyelash detection software were better, SQRT normalization would account for a larger portion

of this difference.

A second possible explanation for the decrease in the mean of the non-match distributions relates to the

degrees of freedom in a binomial distribution. The probability mass function for a binomial distribution is

given by

P (X = x) =







n

x






px(1 − p)n−x, (2)

where p is the probability of success (of “heads” in a toin-coss, or of a “1” in an iris code bit), and n is the

number of independent degrees of freedom (independent Bernoulli trials). Non-match Hamming distance

scores follow a binomial distribution with p = .5. One would expect a value of n = “number of bits”

2We would like to thank one of our anonymous reviewers for suggesting that we explore this idea.
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Figure 12: SQRT normalization accounts for part of the decrease in means between set 1 and set 3.

for the second parameter. However, bits in any given iris code have internal correlations arising from iris

features [19]. Because of these correlations, the number of independent degrees of freedom is significantly

smaller than the actual number of bits in an iris code. In [7], Daugman reports that for his 2048-bit iris

codes, his non-match distribution follows a binomial distribution with n = 249.

The number of degrees of freedom is significant, because a distribution with more degrees of freedom has

a smaller standard deviation. Therefore, a possible explanation for the phenomenon in Figure 11 is that

there are fewer degrees of freedom in the underlying distribution for set 3 (large pupils). The simple fact

that there is less iris area available in the images may result in fewer degrees of freedom in the distribution.

Up to this point, we have displayed the match and nonmatch distributions separately. In order to

summarize both distributions in one figure, we plotted the performance for all three sets in a Decision Error

Threshold (DET) curve (Figure 13). This DET curve shows how the false accept rate and false reject rate

in our system would change as we vary the decision threshold. Since we aim to minimize error rates, we

want the performance curves to come close to the lower left corner of the graph. This figure reiterates what

we have already explained in the preceding paragraphs; namely that the performance of the system on the

dataset containing small pupils is clearly better than the performance on the datasets with medium or large

pupils.
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Figure 13: Our iris biometric algorithm performs significantly better when the dataset contains eye images
with small pupils.

Figure 14: ∆ is a quantity that refers to the difference in dilation between two eyes in a comparison.

6 Comparisons between iris images with varying degrees of dila-

tion

Our next experiment deals with comparisons in which the two irises being compared have varying degrees of

relative dilation. In order to discuss varying degrees of dilation, we defined a quantity, ∆, which measured

the difference in dilation between two eyes (Figure 14):

∆ =
pupil radius1
iris radius1

−

pupil radius2
iris radius2

. (3)

For a comparison in which one eye has a very small pupil, and one eye has a very large pupil, ∆ is

very large. Within the comparisons done in our experiments, we measured a ∆ value as large as 0.487. A

comparison between two eyes taken under identical lighting conditions could have ∆ = 0.
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Figure 15: The match distribution of comparisons between eyes with different degrees of dilation has a larger
mean than the distribution of comparisons between eyes with the same degrees of dilation.

Again, we separated all comparisons into sets. For this experiment, the first set contained comparisons

with small values of ∆. The last set contained comparisons with large ∆, or comparisons between two eyes

of very different degrees of dilation. We ran this experiment for both the match distribution (same subject)

and the non-match distribution (different subjects). The distributions are shown in Figures 15 and 16. For

the match distribution, there were almost no comparisons with ∆ in the 0.3 to 0.4 range, so Figure 15 only

shows three sets. The non-match distribution had more comparisons in that range, and therefore, four sets

are shown.

The match distribution shifts to the right as the difference in pupil dilation increases. The mean of

the distributions for comparisons with ∆ between 0 and 0.1 is 0.2250. The mean of the distribution for

comparisons with ∆ between 0.1 and 0.2 is 0.2747. When ∆ is between 0.2 and 0.3, the mean is 0.3084. In

contrast, the non-match distribution does not shift noticeably. The means of the non-match distributions

do not show either an increasing or decreasing trend. The means of the distributions were, in order from

smallest ∆ to largest ∆, 0.4420, 0.4432, 0.4439, 0.4438.

The Decision Error Threshold (DET) curve for our second experiment is shown in Figure 17. This graph

shows that performance rates are higher when we only consider comparisons between eye images of similar

dilation ratios.
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isons.

10−4 10−3 10−2 10−1 100
10−3

10−2

10−1

100
Performance for Different Ranges of Delta

False Accept Rate

Fa
lse

 R
ej

ec
t R

at
e

 

 

EER 0.017

EER 0.037

EER 0.064

FRR 0.059

FRR 0.064

FRR 0.192

Small Delta
Medium Delta
Large Delta
EER
FRR @ FAR=0.001

Figure 17: Our iris biometric algorithm performs better when there are not large differences in pupil sizes.
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7 Conclusion

We have quantitatively characterized the effect of pupil dilation on iris recognition performance. We found

that comparisons between two dilated eyes followed a distribution with a mean fractional Hamming distance

of 0.06 higher than the mean of the distribution for non-dilated eyes. The means of both the match and

the non-match distributions are expected to fall between 0 and 0.5. Therefore, a shift of 0.06 is nontrivial,

amounting to twelve percent of this range. The difference in performance may be partially due to the fact

that there is less iris area available in an image of a dilated eye. Points on an eye image are also sampled

more closely together for a dilated eye image as compared with a non-dilated image.

We further found that the difference in dilation between an enrollment image and an image to be rec-

ognized has a marked affect on the comparison. Comparisons between images with widely different degrees

of dilation follow a distribution with a mean about 0.08 higher than the mean of the distribution of images

with similar degrees of dilation.

Based on our results, we recommend that a measure of pupil dilation should be created as meta-data to

be associated with each generated iris code. This would allow systems to characterize the reliability of an

iris code match as a function of the pupil dilations in the underlying images.

One possible line of future work suggested by our results concerns pre-processing the iris image to create

an iris code. When the degree of pupil dilation is large, so that the width of the iris is small in pixels, it

may be worthwhile to include a super-resolution step in the pre-processing.
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